Трехфазный асинхронный двигатель
Содержание:
- Фото советы как сделать ветрогенератор на 220В своими руками
- Какой тип шагового двигателя у меня?
- Способы подключения мотора
- Работа такого двигателя в однофазной сети
- Принцип работы однофазного электродвигателя 220 В.
- Схемы подключения однофазных асинхронных двигателей
- Схема подключения однофазного двигателя через конденсатор
- Болезни и вредители
- Виды шаговых двигателей по типу соединения электромагнитов статора:
- Виды уличных ограждений
- Асинхронный или коллекторный: как отличить
- Применение магнитного пускателя для правильного подключения
- Диагностика неполадок
- Виды и описание электродвигателей
- Установка и подбор компонентов
Фото советы как сделать ветрогенератор на 220В своими руками
Какой тип шагового двигателя у меня?
Если вручную покрутить ротор отключённого двигателя, то можно заметить, что он движется не плавно, а шагами. После того, как Вы покрутили ротор, замкните все провода двигателя и покрутите ротор повторно. Если ротор крутится также, значит у Вас реактивный двигатель. Если для вращения ротора требуется прикладывать больше усилий, значит у вас двигатель с постоянными магнитами или гибридный. Отличить двигатель с постоянными магнитами от гибридного можно подсчитав количество шагов в одном обороте. Для этого не обязательно считать все шаги, достаточно примерно понять, их меньше 50 или больше. Если меньше, значит у Вас двигатель с постоянными магнитами, а если больше, значит у Вас гибридный двигатель.
Способы подключения мотора
А теперь давайте рассмотрим несколько способов подключений:
- конденсаторный способ;
- частотный способ;
- фазовое управление с помощью симистора;
Какой из способов лучше всего? Знаете, всё зависит от задачи, которую нужно решить… А так на вкус и цвет, сами знаете…
Если вы мало знакомы с преобразователем частоты, можете ознакомиться в статье «Чего вы не знаете о преобразователе частоты?»
Конденсаторный способ подключений
Бюджетное подключение трехфазных моторов к однофазной сети. Просто цепляем конденсатор последовательно в цепи обмотки и превращаем аппарат из трехфазного в однофазный. Вот схема:
Сп — пусковой конденсатор, а Ср — рабочий конденсатор. Как подбирать ёмкость в этом случае я расписывать не буду. В просторах интернета есть полно информации по этому поводу.
Фазовое управление с помощью симистора
Это один из самый старых способов управления. Две обмотки двигателя подключаются параллельно, одна из них с конденсатором. К точкам обмоток соединяем симисторный регулятор. Их актуальность, по-моему мнению, ещё не пропала. Лучше всего использовать для не тяжёлых нагрузок (вентиляторы, насосы).
На выходе устройства формируется напряжение сетевой частоты 50 Гц и настраивается среднеквадратичное число. Таким образом мы меняем время открытого состояния симистора за период следования напряжения. Единственный недостаток: момент на валу падает относительно снижения напряжения. Вот вам пример Autonics SPK1:
Входы для регулировки скорости универсальные. Сюда можно подключить и потенциометр 1 кОм, и датчик с токовым сигналом 4-20 мА, и напряжение 0-5 В.
Частотный способ
О популярности преобразователя частоты нет смысла говорить. Так как это устройство давно известно всем. Частотный способ является основным в нашем 21 веке. Скорость регулируется с помощью ШИМ-модуляции. Достаточно сложный девайс, требующий отдельной статьи. По входному напряжению существуют как и 380 В, так и 220В. Но что же получается по выходу?
На рынке есть готовые варианты и на однофазный, и на трёхфазный электродвигатель. Просто нужно подобрать схемное решение.
Но, бывают случаи когда ПЧ с однофазным выходом не по карману. Или у вас на полке лежит трёхфазный ПЧ. Давайте рассмотрим вариант подключения мотора к преобразователю частоты.
Работа такого двигателя в однофазной сети
Для правильного понимания поставленной задачи нужно четко представлять, по какому принципу работают трехфазные электродвигатели. Имея три обмотки, смещенные на 120°, они находятся в идеальных условиях: магнитное поле равномерно вращается по окружности, создавая движущую силу без каких-либо рывков и пульсаций. После подачи в схему напряжения, появляется пусковой момент, и ротор начинает раскручиваться до рабочих оборотов.
Работа трехфазного двигателя
Трехфазный ток можно представить как три однофазные схемы, также смещенные друг относительно друга на 120°. Понятно, почему двигатель будет работать без рывков: при повороте ротора на каждую треть, он «подхватывается» следующей фазой, которая «провожает» его еще на треть оборота. И как результат получается полный оборот.
Но вот возникла необходимость включения такого аппарата на одной фазе. Если просто взять, и на любые две обмотки подать такое напряжение, то ничего не произойдет. В одной из катушек статора будет пульсирующее магнитное поле, никак не влияющее ни на что больше. Пускового момента нет, крутящего тоже – двигатель будет только нагреваться. Но теперь, зная принцип работы таких машин, несложно понять, что нужно. Необходимо задействовать все три обмотки, при этом должно быть смещение по фазам.
Подключение такого типа двигателя к однофазной сети производится по самой распространенной схеме – с пусковым конденсатором. Такой метод позволяет задействовать все три обмотки, а также создать необходимый сдвиг по фазам.
Обмотки электродвигателя можно включить по двум основным схемам: звезда и треугольник. В зависимости от этого различается и подключение конденсатора.
Можно было бы обойтись и одним конденсатором, но чаще всего электродвигатели имеют какую-то нагрузку, а значит, чтобы их запустить, нужна будет дополнительная емкость. Поэтому в цепь нужно кратковременно включить дополнительный емкостной элемент – пусковой конденсатор.
Принцип работы однофазного электродвигателя 220 В.
В статоре однофазного электродвигателя 220 В вырабатывается магнитное поле. Именно оно является импульсом, который приводит в работу ротор. Чтобы представить, как функционирует электродвигатель, стоит смоделировать следующую ситуацию.
Например, в пусковой обмотке напряжения нет. Образование магнитного поля можно запустить, подключив основную обмотку к сети. Его работа основывается на пульсировании, при этом пространство остаётся в состоянии покоя. Магнитное поле разделяется на две части, каждая из которых вращается в стороны, противоположные друг другу, при одинаковой частоте. При задании ротору начального вращения двигатель со временем будет его наращивать. При этом частота элемента и самого магнитного поля различается. Разницу показателей определяют как скольжение.
Из магнитных потоков возникает движущая сила. Это закон электромагнитной индукции. Движущая сила формирует два типа тока. Один из них обратный, второй – прямой. Частота вращения ротора прямо пропорциональна показателю скольжения. По закону Ампера, магнитное поле при взаимодействии с обратным током создаёт вращение.
Схемы подключения однофазных асинхронных двигателей
С пусковой обмоткой
Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.
Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»
Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.
Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).
Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):
- один с рабочей обмотки — рабочий;
- с пусковой обмотки;
- общий.
С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.
Со всеми этими
Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС
подключение однофазного двигателя
Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно)
К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку
Конденсаторный
При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).
Схемы подключения однофазного конденсаторного двигателя
Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.
Схема с двумя конденсаторами
Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.
Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым
При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.
Подбор конденсаторов
Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:
- рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
- пусковой — в 2-3 раза больше.
Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.
Изменение направления движения мотора
Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.
Как все может выглядеть на практике
Схема подключения однофазного двигателя через конденсатор
При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.
- 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
- 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
- 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.
Болезни и вредители
Больше всего можжевельник боится фузариоза. Это грибковое заболевание может спровоцировать гниение корневой системы и ствола кустарника. Избавится от недуга практически невозможно. В целях профилактики весной куст обрабатывают специальными химикатами.
Под палящим солнцем и при недостаточной влажности хвоя кустарника может пожелтеть. Это может быть вызвано и грибком. При обнаружении заболевания желтую хвою удаляют, растение поливают и обрабатывают химически.
По этим же причинам – недостаток влаги и грибок – кустарник может засохнуть (полностью или частично). Сухие ветки нужно незамедлительно удалить и смазать срезы садовым варом или натуральной краской.
Виды шаговых двигателей по типу соединения электромагнитов статора:
По типу соединения электромагнитов, шаговые двигатели делятся на: униполярные и биполярные.
На рисунке представлено упрощённое, схематическое, представление обмоток. На самом деле, каждая обмотка состоит из нескольких обмоток электромагнитов, соединённых последовательно или параллельно
- Биполярный двигатель имеет 4 вывода. Выводы A и A питают обмотку AA, выводы B и B питают обмотку BB. Для включения электромагнита, на выводы обмотки необходимо подать разность потенциалов (два разных уровня), поэтому двигатель называется биполярным. Направление магнитного поля зависит от полярности потенциалов на выводах.
- Униполярный двигатель имеет 5 выводов. Центральные точки его обмоток соединены между собой и являются общим (пятым) выводом, который, обычно, подключают к GND. Для включения электромагнита, достаточно подать положительный потенциал на один из выводов обмотки, поэтому двигатель называется униполярным. Направление магнитного поля зависит от того, на какой именно вывод обмотки подан положительный потенциал.
- 6-выводной двигатель имеет ответвление от центральных точек обмоток, но обмотка AA не соединена с обмоткой BB. Если не использовать выводы центральных точек обмоток, то двигатель будет биполярным, а если эти выводы соединить и подключить к GND, то двигатель будет униполярным.
- 8-выводной двигатель является наиболее гибким в плане подключения электромагнитов. Данный двигатель можно не только использовать как биполярный или униполярный, но и самим определять, как соединить электромагниты обмоток, последовательно или параллельно.
Виды уличных ограждений
Рассмотрим виды ограждений крылец. Их классифицируют по различным признакам: тип конструкции, материал изготовления, форма
За основу нужно взять именно материалы, так как это первое, на что обращают внимание хозяева дома при выборе поручней
Различают следующие виды уличных ограждений для крыльца:
- деревянные;
- металлические;
- бетонные;
- пластиковые.
Разновидности уличных ограждений в зависимости от материала изготовления
Подбирать конкретный вид изделия следует под внешнюю отделку дома. Тем не менее иногда удается скомбинировать совершенно разные стили и направления.
Асинхронный или коллекторный: как отличить
Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.
Так выглядит новый однофазный конденсаторный двигатель
Как устроены коллекторные движки
Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.
Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.
Строение коллекторного двигателя
Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.
Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.
Асинхронные
Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.
Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.
Строение асинхронного двигателя
Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.
В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.
Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.
Применение магнитного пускателя для правильного подключения
Подключить однофазный электродвигатель можно и при помощи специального магнитного пускателя. Выбирать его необходимо так, чтобы контактная система отлично выдерживала нагрузку во время работы мотора. К примеру, все пускатели разделяются на несколько типов, чем больше будет величина, тем больший ток может проходить через магнитный пускатель. Такие типы включают в себя (серия ПМЛ):
Укладка обмоток в статоре однофазного электродвигателя.
- 1 величина – 10 А;
- 2 величина – 25 А;
- 3 величина – 40 А;
- 4 величина – 63 А;
- 5 величина – 80 А;
- 6 величина – 125 А;
- 7 величина – 200 А.
Когда пусковая величина уточнена, надо выбрать катушку управления на 220 В, можно применять на 380 В – все зависит от типа оборудования. Схема для магнитного пускателя собирается, после этого выполняется подключение силовой части, выполняется ввод 220 В на контакты. Электродвигатель включается, при этом кнопку «Пуск-Стоп» надо подключать с использованием силовых контактов пускателя.
К примеру, фаза для кнопки «Стоп» подключается для замкнутого контакта, а для кнопки «Пуск» выполняется соединение с контактом разомкнутого типа, после чего пускается на катушку пускателя. Ноль следует подключать на второй вывод катушки магнитного пускателя, для фиксации используется специальный блок, который и подает электропитание на катушку.
Диагностика неполадок
Неисправности напольных и настольных вентиляторов бывают 2-х видов – механические и электрические. Именно на первые простой обыватель не обращает особого внимания, а ведь это ведет к поломке в электрической части прибора. К примеру, если заклинил вал, а оборудование продолжает работать, то это бесспорно вызовет перегрев электродвигателя. Если разбалтывается подшипник, то в будущем повредится обмотка статора.
Перед диагностированием вентилятора в домашних условиях отключите прибор от электропитания. Агрегат часто не включается из-за неисправности шнура или розетки, поэтому в первую очередь к блоку питания подключают любой другой прибор. Если он не включается, значит, виновник – розетка, которую нужно починить.
Чтобы осмотреть внутреннее оснащение вентилятора, разберите его, действуя по следующей схеме:
- Снимите основной обод.
- Открутите на защитной сетке крепежи и снимите её переднюю часть.
- Отсоедините пропеллер с лопастями. Особенность – в вентиляторах пропеллер крепится при помощи гайки с левосторонней резьбой, которая прикручивается к валу электродвигателя. Следовательно, откручивают крепеж по часовой стрелке, а закручивают наоборот.
- Уберите защитную сетку сзади, откручивая гайку.
- Открутите 4 винта.
- Снимите весь крепежный материал с кожуха мотора и уберите панель. Не забудьте о болте, который располагается на рукоятке, регулирующей вращение корпуса. Если этого не сделать, не откроется доступ к двигателю.
- Снимите заглушку с задней стороны прибора.
- Открутите шуруп.
- Доступ к двигателю открыт.
Так как поломка часто связана с недостатком смазки, обязательно капните несколько капель технического масла на втулку.
Проверните вал сначала в одну, потом в другую сторону для лучшего впитывания смазочного материала. После этого соберите вентилятор в обратном направлении, включите прибор и проверьте на работоспособность.
Более наглядно про то, как разобрать вентилятор и провести диагностику неисправностей смотрите в этом видео:
Механические неисправности
Чтобы обнаружить неисправности механической части вентиляторного устройства, обратите внимание на такие проявления:
- посторонние звуки (шумы, свисты, скрипы и т. п.);
- медленная скорость вращения лопастей при работе;
- трудности с вращением пропеллера при выключенном вентиляторе.
Проблемы в электрической части
Неисправность в электрике проявляется следующими признаками:
- запах гари;
- невозможность запуска агрегата;
- замедление скорости работы пропеллерного механизма при включенном приборе;
- срабатывание автоматических защитных выключателей (если они предусмотрены).
Виды и описание электродвигателей
Как известно, двигатели бывают разных типов, каждый из которых определяется особенностями обустройства и функциональностью:
- Однофазный.
- Двухфазный.
- Трехфазный.
Как правило, однофазные и двухфазные моторы имеют самое простое строение, потребляют мало электроэнергии и достаточно функциональны. Благодаря этому, механизм используется практически в любом производстве электроприборов.
Трехфазный используется в основном для обустройства станков в цехах и сложного оборудования на массовых производствах. Его удельная мощность позволяет выполнять большой объем работы. Из этого следует то, что этот механизм потребляет большое количество энергии.
Установка и подбор компонентов
Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно (распределительная коробка на корпусе электродвигателя).
В зависимости от места установки и других условий эксплуатации конденсаторы могут располагаться на внешней стороне двигателя рядом с коробкой расключения. В некоторых случаях конденсаторы выносят в отдельный корпус, расположенный недалеко от электродвигателя.
Величину емкости конденсаторов в идеальном случае с постоянной токовой нагрузкой можно рассчитать, но в большинстве случаев нагрузка нестабильна, и методика расчетов сложная. Поэтому опытные электрики руководствуются статистикой и практическим опытом:
- для конденсаторов рабочей схемы емкость выбирается 0,75 мкФ на 1 кВт мощности;
- для пусковых конденсаторов 1,8–2 мкФ на кВт мощности, при этом надо учитывать скачки напряжения в период пуска и остановки — они колеблются в пределах 300–600 В. Поэтому по напряжению конденсатор должен быть как минимум 400 В.
Вообще при выборе схемы и конденсаторов на однофазный двигатель надо руководствоваться назначением двигателя и условиями эксплуатации. Когда нужно быстро раскрутить двигатель, используется схема с пусковым конденсатором. При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.
Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.