Расчет теплопотерь дома: подробная инструкция с формулами + онлайн-калькулятор быстрого расчета

Содержание:

Пример расчета теплопотерь дома

Рассчитаем теплопотери 2-этажного дома высотой 7 м, имеющего размеры в плане 10х10 м.

Стены имеют толщину 500 мм и выстроены из теплой керамики (Кт = 0,16 Вт/м*С), снаружи утеплены минеральной ватой толщиной 50 мм (Кт = 0,04 Вт/м*С).

В доме имеется 16 окон площадью по 2,5 кв. м.

Наружная температура в самую холодную пятидневку составляет -25 градусов.

Средняя наружная температура за отопительный период — (-5) градусов.

Внутри дома требуется обеспечить температуру +23 градуса.

Потребление воды — 15 куб. м/мес.

Продолжительность отопительного периода — 6 мес.

Термическое сопротивление:

  • основного материала: R1 = 0,5 / 0,16 = 3,125 кв. м*С/Вт;
  • утеплителя: R2 = 0,05/0,04 = 1,25 кв. м*С/Вт.

То же для стены в целом: R = R1 + R2 = 3.125 + 1.25 = 4.375 кв. м*С/Вт.

Определяем площадь стен: А = 10 х 4 х 7 – 16 х 2,5 = 240 кв. м.

Теплопотери через стены составят:

Qс = (240 / 4.375) * (23 – (-25)) = 2633 Вт.

Аналогичным образом рассчитываются теплопотери через крышу, пол, фундамент, окна и входную дверь, после чего все полученные значения суммируются. Термическое сопротивление дверей и окон производители обычно указывают в паспорте на изделие.

Обратите внимание на то, что при расчете теплопотерь через пол и фундамент (при наличии подвала) разность температур dT будет намного меньшей, так как при ее вычислении учитывается температура не воздуха, а грунта, который зимой является гораздо более теплым.

Теплопотери через вентиляцию

Определяем объем воздуха в помещении (для упрощения расчета толщина стен не учитывается):

V = 10х10х7 = 700 куб. м.

Принимая кратность воздухообмена Кв = 1, определяем теплопотери:

Qв = (700 * 1 / 3600) * 1,2047 * 1005 * (23 – (-25)) = 11300 Вт.

Вентиляция в доме

Теплопотери через канализацию

С учетом того, что жильцы потребляют 15 куб. м воды в месяц, а расчетный период составляет 6 мес., теплопотери через канализацию составят:

Qк = (15 * 6 * 1000 * 4183 * 23) / 3 600 000 = 2405 кВт*ч

Оценка полного объема энергозатрат

Для оценки всего объема энергозатрат за отопительный период необходимо пересчитать теплопотери через вентиляцию и ограждающие конструкции с учетом средней температуры, то есть dT составит не 48, а только 28 градусов.

Тогда средняя мощность потерь через стены составят:

Qс = (240 / 4.375) * (23 – (-5)) = 1536 Вт.

Предположим, что через крышу, пол, окна и двери дополнительно теряется в среднем 800 Вт, тогда совокупная средняя мощность теплопотерь через ограждающие конструкции составит Q = 1536 + 800 = 2336 Вт.

Qв = (700 * 1 / 3600) * 1,2047 * 1005 * (23 – (-5)) =6592 Вт.

Тогда за весь период на отопление придется затратить:

W = ((2336 + 6592)*24*183)/1000 = 39211 кВт*ч.

К этой величине нужно прибавить 2405 кВт*ч потерь через канализацию, так что общий объем энергозатрат за отопительный период составит 41616 кВт*ч.

Если в качестве энергоносителя используется только газ, из 1-го куб. м которого удается получить 9,45 кВт*ч тепла, то его понадобится 41616 / 9,45 = 4404 куб. м.

Расчет теплопотерь

Вот как следует производить вычисления:

Теплопотери через ограждающие конструкции

Для каждого материала, входящего в состав ограждающих конструкций, в справочнике или предоставленном производителем паспорте находим значение коэффициента теплопроводности Кт (единица измерения — Вт/м*градус).

Для каждого слоя ограждающих конструкций определяем термическое сопротивление по формуле: R = S/Кт, где S – толщина данного слоя, м.

Для многослойных конструкций сопротивления всех слоев нужно сложить.

Определяем теплопотери для каждой конструкции по формуле Q = (A / R) *dT,

Где:

  • А — площадь ограждающей конструкции, кв. м;
  • dT — разность наружной и внутренней температур.
  • dT следует определять для самой холодной пятидневки.

Теплопотери через вентиляцию

Для этой части расчета необходимо знать кратность воздухообмена.

В жилых зданиях, возведенных по отечественным стандартам (стены являются паропроницаемыми), она равна единице, то есть за час должен обновиться весь объем воздуха в помещении.

В домах, построенных по европейской технологии (стандарт DIN), при которой стены изнутри застилаются пароизоляцией, кратность воздухообмена приходится увеличивать до 2-х. То есть за час воздух в помещении должен обновиться дважды.

Теплопотери через вентиляцию определим по формуле:

Qв = (V*Кв / 3600) * р * с * dT,

Где

  • V — объем помещения, куб. м;
  • Кв — кратность воздухообмена;
  • Р — плотность воздуха, принимается равной 1,2047 кг/куб. м;
  • С — удельная теплоемкость воздуха, принимается равной 1005 Дж/кг*С.

Приведенный расчет позволяет определить мощность, которую должен иметь теплогенератор системы отопления. Если она оказалась слишком высокой, можно сделать следующее:

  • понизить требования к уровню комфорта, то есть установить желаемую температуру в наиболее холодный период на минимальной отметке, допустим, в 18 градусов;
  • на период сильных холодов понизить кратность воздухообмена: минимально допустимая производительность приточной вентиляции составляет 7 куб. м/ч на каждого обитателя дома;
  • предусмотреть организацию приточно-вытяжной вентиляции с рекуператором.

Заметим, что рекуператор полезен не только зимой, но и летом: в жару он позволяет сэкономить произведенный кондиционером холод, хотя и работает в это время не столь эффективно, как в мороз.

Правильнее всего при проектировании дома выполнить зонирование, то есть назначить для каждого помещения свою температуру исходя из требуемого комфорта. К примеру, в детской или комнате пожилого человека следует обеспечить температуру порядка 25-ти градусов, тогда как для гостиной будет достаточно и 22-х. На лестничной площадке или в помещении, где жильцы появляются редко либо имеются источники тепловыделения, расчетную температуру можно вообще ограничить 18-ю градусами.

Очевидно, что цифры, полученные в данном расчете, актуальны только для очень короткого периода — самой холодной пятидневки. Чтобы определить общий объем энергозатрат за холодный сезон, параметр dT нужно вычислять с учетом не самой низкой, а средней температуры. Затем нужно выполнить следующее действие:

W = ((Q + Qв) * 24 * N)/1000,

Где:

  • W — количество энергии, требующейся для восполнения теплопотерь через ограждающие конструкции и вентиляцию, кВт*ч;
  • N — количество дней в отопительном сезоне.

Однако, данный расчет окажется неполным, если не будут учтены потери тепла в канализационную систему.

Теплопотери через канализацию

Для приема гигиенических процедур и мытья посуды жильцы дома греют воду и произведенное тепло уходит в канализационную трубу.

Но в данной части расчета следует учитывать не только прямой нагрев воды, но и косвенный — отбор тепла осуществляет вода в бачке и сифоне унитаза, которая также сбрасывается в канализацию.

Исходя из этого, средняя температура нагрева воды принимается равной всего 30-ти градусам. Теплопотери через канализацию рассчитываем по следующей формуле:

Qк = (Vв * T * р * с * dT) / 3 600 000,

Где:

  • Vв — месячный объем потребления воды без разделения на горячую и холодную, куб. м/мес.;
  • Р — плотность воды, принимаем р = 1000 кг/куб. м;
  • С — теплоемкость воды, принимаем с = 4183 Дж/кг*С;
  • dT — разность температур. Учитывая, что вода на входе зимой имеет температуру около +7 градусов, а среднюю температуру нагретой воды мы условились считать равной 30-ти градусам, следует принимать dT = 23 градуса.
  • 3 600 000 — количество джоулей (Дж) в 1-м кВт*ч.

Расчет потерь в тепловых сетях

Здравствуйте, друзья! Расчет тепловых потерь трубопроводами отопления является важным и нужным расчетом, так как позволяет в цифрах определить количество тепла, теряемого в трубах отопления. Также этот расчет важен по той причине, что теплоснабжающие организации включают потери тепла через трубопроводы в оплату теплоэнергии, в том случае если прибор учета тепловой энергии не находится на границе балансовой принадлежности, а от границы раздела до прибора учета тепла есть участки теплотрассы на балансе потребителя тепла.

Вообще, надо сказать, что расчет этот довольно трудоемкий. Ниже приведен пример расчета тепловых потерь трубопроводами отопления. Расчет производится согласно Приказа Министерства энергетики РФ от 30 декабря 2008 г. N 325 «Об утверждении порядка определения нормативов технологических потерь при передаче тепловой энергии, теплоносителя» и методических указаний по составлению энергетической характеристики для систем транспорта тепловой энергии по показателю «тепловые потери» СО 153-34.20.523-2003, Часть 3.

Изоляционный материал: скорлупы минераловатные оштукатуренные,

δ- толщина изоляции = 0,05 м,

α – коэффициент теплоотдачи от изоляции трубопровода к воздуху канала, принимается согласно приложению 9 СНиП 2.04.14-88 равным 8 Вт/(м2 °С),

αв – коэффициент теплоотдачи от воздуха к грунту, принимается согласно приложению 9 СНиП 2.04.14-88 равным 8 Вт/(м2 °С),

H – глубина заложения до оси трубопроводов, м,

Ø – наружный диаметр трубопровода = 0,076 м,

L – длина трассы = 60 м,

b – ширина канала теплосети = 0,9 м,

h — высота канала теплосети = 0,45 м,

tпср.г. – средняя за отопительный сезон температура теплоносителя в подающем трубопроводе = 65,2 °С,

tоср.г — средняя за отопительный сезон температура теплоносителя в обратном трубопроводе= 48,5 °С,

tгрср.г — среднегодовая температура грунта = 4,5 °С,

λгр – коэффициент теплопроводности грунта = 2,56 Вт/(м °С).

Коэффициент теплопроводности изоляции:

λиз = 0,069+0,00019*((56,85+40)/2) =0,07820075 Вт / (м °С).

Термическое сопротивление теплоотдаче от поверхности изоляции в воздушное пространство:

Rвозд = 1 / (π * α * (Ø + 2δ)) = 1 / (π * 8 * (0,076 + 2 * 0,05)) = 0,2262 (м °С) / Вт.

Эквивалентный диаметр сечения канала в свету:

Øэкв. = 2 * h * b / (h + b) = 2 * 0,45 * 0,9 / (0,45 + 0,9) = 0,6 м.

Термическое сопротивление теплоотдаче от воздуха в канале к грунту:

Rвозд.кан = 1 / (π * αв * Øэкв.) = 1 / (π * 8 * 0,6) = 0,06631456 (м °С) / Вт.

Термическое сопротивление массива грунта:

Rгр = (ln (3,5 * (Н / h) * (h / b) 0,25) / (λгр * (5,7 + 0,5 * b / h)) = (ln (3,5 * (1/ 0,45) * (0,45 / 0,9) 0,25) / (2,56 * (5,7 + 0,5 * 0,9 / 0,45)) = 0,109390664 (м °С) / Вт.

Температура воздуха в канале:

tкан = (tпср.г./( Rиз + Rвозд) + tоср.г/( Rиз + Rвозд) + tгрср.г/( Rвозд.кан + Rгр)) / (1/( Rиз + Rвозд) + 1/( Rиз + Rвозд) + 1/( Rвозд.кан + Rгр)) = (65,2/(1,1397+0,2262) + 48,5/(1,1397 + 0,02262) + 4,5/(0,066 + 0,109)) / (1/(1,1397 + 0,2262) + 1/(1,1397 + 0,2262) + 1/(0,066 + 0,109)) = 15,195 °С.

Среднегодовые часовые удельные тепловые потери qр (Вт / м):

qр = (tкан — tгрср.г) / (Rвозд.кан + Rгр) = (15,195 – 4,5) / (0,066 + 0,109) = 61,1 Вт = 52,55 ккал/час.

Часовые тепловые потери при среднегодовых условиях работы тепловой сети:

Qнорм ср.г. = Σ (qр *L *ß) * 10-6 , Гкал/час,

где ß – коэффициент местных потерь (1,2 для Ø < 150 мм);

Qнорм ср.г. = 52,55 *60 *1,2 * 10-6 = 0,0038 Гкал/час.

Количество дней : (n)

В мае принята 1-я половина – 15 дней.

В сентябре принята 2-я половина – 15 дней

Qиз мес = Qнормср.г. *(( tпср.м + tоср.м — 2* tгрср.м) / (tпср.г + tоср.г – 2* tгрср.г)) * 24 * n.

Qиз сентябрь = 0,0038 * ((65 + 51,9 – 2 * 13,6) / (65,2 + 48,5 – 2 * 4,5)) * 24 * 15 = 1,17 Гкал;

Qиз октябрь = 0,0038 * ((65 + 51,4 – 2 * 8,9) / (65,2 + 48,5 – 2 * 4,5)) * 24 * 31 = 2,5 Гкал;

Qиз ноябрь = 0,0038 * ((65 + 50– 2 * 5,1) / (65,2 + 48,5 – 2 * 4,5)) * 24 * 30 = 2,74 Гкал;

Qиз декабрь = 0,0038 * ((79 + 56,2– 2 * 3,0) / (65,2 + 48,5 – 2 * 4,5)) * 24 * 31 = 3,5 Гкал;

Qиз январь = 0,0038 * ((75,3 + 54,2– 2 * 1,6) / (65,2 + 48,5 – 2*4,5)) * 24 * 31 = 3,4 Гкал;

Qиз февраль = 0,0038 * ((80,2 + 56,9– 2 * 0,9) / (65,2 + 48,5 – 2*4,5)) * 24 * 28 = 3,3 Гкал;

Qиз март = 0,0038 * ((65 + 49,6– 2 * 0,5) / (65,2 + 48,5 – 2*4,5)) * 24 * 31 = 3,1 Гкал;

Qиз апрель = 0,0038 * ((65 + 51,3– 2 * 0,9) / (65,2 + 48,5 – 2*4,5)) * 24 * 31 = 3,0 Гкал;

Qиз май = 0,0038 * ((65 + 52– 2 * 4,1) / (65,2 + 48,5 – 2*4,5)) * 24 * 15 = 1,42 Гкал.

Суммарные потери тепловой энергии через изоляцию

Совсем недавно я выпустил программу для расчета потерь в тепловых сетях, где максимально автоматизировал процесс расчета теплопотерь трубопроводами отопления.

Мою программу расчета теплопотерь в тепловых сетях можно

=======>>> посмотреть здесь .

Программу можно получить и напрямую, написав мне через форму обратной связи на моем сайте. В этом случае предусмотрена скидка.

Online программа расчета теплопотерь дома

Выберите город tнар = – o C

Введите температуру воздуха в помещении; tвн = + o C

Теплопотери через стены развернуть свернуть

Вид фасада &#945 =

Площадь наружных стен, кв.м.

Материал первого слоя &#955 =

Толщина первого слоя, м.

Материал второго слоя &#955 =

Толщина второго слоя, м.

Материал третьего слоя &#955 =

Толщина третьего слоя, м.

Теплопотери через стены, Вт

Теплопотери через окна развернуть свернуть

Введите площадь окон, кв.м.

Теплопотери через окна

Теплопотери через потолки развернуть свернуть

Выберите вид потолка

Введите площадь потолка, кв.м.

Материал первого слоя &#955 =

Толщина первого слоя, м.

Материал второго слоя &#955 =

Толщина второго слоя, м.

Материал третьего слоя &#955 =

Толщина третьего слоя, м.

Теплопотери через потолок

Теплопотери через пол развернуть свернуть

Выберите вид пола

Введите площадь пола, кв.м.

Материал первого слоя &#955 =

Толщина первого слоя, м.

Материал второго слоя &#955 =

Толщина второго слоя, м.

Материал третьего слоя &#955 =

Толщина третьего слоя, м.

Теплопотери через пол

Материал первого слоя &#955 =

Толщина первого слоя, м.

Материал второго слоя &#955 =

Толщина второго слоя, м.

Материал третьего слоя &#955 =

Толщина третьего слоя, м.

Площадь зоны 1, кв.м. что такое зоны?

Площадь зоны 2, кв.м.

Площадь зоны 3, кв.м.

Площадь зоны 4, кв.м.

Теплопотери через пол

Теплопотери на инфильтрацию развернуть свернуть

Введите Жилую площадь, м.

Теплопотери на инфильтрацию

О программе развернуть свернуть

Очень часто на практике принимают теплопотери дома из расчета средних около 100 Вт/кв.м. Для тех, кто считает деньги и планирует обустроить дом экономной системой отопления без лишних капиталовложений и с низким расходом топлива, такие расчеты не подойдут. Достаточно будет сказать, что теплопотери хорошо утепленного дома и неутепленного могут отличаться в 2 раза. Точные расчеты по СНиП требуют большого времени и специальных знаний, но эффект от точности не ощутится должным образом на эффективности системы отопления.

Данная программа разрабатывалась с целью предложить лучший результат цена/качество, т.е. (затраченное время)/(достаточная точность).

03.12.2017 – скорректирована формула расчета теплопотерь на инфильтрацию. Теперь расхождений с профессиональными расчетами проектировщиков не обнаружено (по теплопотерям на инфильтрацию).

10.01.2015 – добавлена возможность менять температуру воздуха внутри помещений.

FAQ развернуть свернуть

Как посчитать теплопотери в соседние неотапливаемые помещения?

По нормам теплопотери в соседние помещения нужно учитываеть, если разница температур между ними превышает 3 o C. Это может быть, например, гараж. Как с помощью онлайн-калькулятора посчитать эти теплопотери?

Пример. В комнате у нас должно быть +20, а в гараже мы планируем +5. Решение. В поле tнар ставим температуру холодной комнаты, в нашем случае гаража, со знаком “-“. -(-5) = +5 . Вид фасада выбираем “по умолчанию”. Затем считаем, как обычно.

Внимание! После расчета потерь тепла из помещения в помещение не забываем выставлять температуры обратно. Обсудить эту статью, оставить отзыв в Google+ | Facebook

Обсудить эту статью, оставить отзыв в Google+ | Facebook

Расчет теплового баланса котла. Определение расхода топлива

Тепловой баланс котла

Составление теплового баланса котла заключается в установлении равенства между поступившим в котел количеством тепла, называемого располагаемым теплом QP, и суммой полезно использованного тепла Q1 и тепловых потерь Q2, Q3, Q4. На основании теплового баланса вычисляют КПД и необходимый расход топлива.

Тепловой баланс составляется применительно к установившемуся тепловому состоянию котла на 1 кг (1 м3) топлива при температуре 0°С и давлении 101,3 кПа.

Общее уравнение теплового баланса имеет вид:

QP + Qв.вн = Q1 + Q2 + Q3 + Q4 + Q5 + Q6, кДж/м3, (2.4.1-1)

где QP — располагаемое тепло топлива; Qв.вн — тепло, внесенное в топку воздухом при его подогреве вне котла; Qф — тепло, внесенное в топку паровым дутьем («форсуночным» паром); Q1 — полезно использованное тепло; Q2 — потеря тепла с уходящими газами; Q3 — потеря тепла от химической неполноты сгорания топлива;- потеря тепла от механической неполноты сгорания топлива; Q5 — потеря тепла от наружного охлаждения; Q6 — потеря с теплом шлака.

При сжигании газообразного топлива в отсутствие внешнего подогрева воздуха и парового дутья величины Qв.вн, Qф, Q4, Q6 равны 0, поэтому уравнение теплового баланса будет выглядеть так:

QP = Q1 + Q2 + Q3 + Q5, кДж/м3. (2.4.1-2)

Располагаемое тепло 1 м3 газообразного топлива:

QP = Qdi + iтл, кДж/м3, (2.4.1-3)

где Qdi — низшая теплота сгорания газообразного топлива, кДж/м3 (см. табл. 1); iтл — физическое тепло топлива, кДж/м3. Учитывается в том случае, когда топливо подогревается посторонним источником тепла. В нашем случае этого не происходит, поэтому QP = Qdi, кДж/м3, (2.4.1-4)

QP = 36 800 кДж/м3. (2.4.1-5)

Тепловые потери и КПД котла

Потери тепла обычно выражаются в % от располагаемого тепла топлива:

и т.д. (2.4.2-1)

Потеря тепла с уходящими газами в атмосферу определяется как разность энтальпий продуктов сгорания на выходе из последней поверхности нагрева (экономайзера) и холодного воздуха:

, (2.4.2-2)

где Iух = IН ЭК — энтальпия уходящих газов. Определяется интерполяцией по данным таблицы 7 по заданной температуре уходящих газов tух°С:

, кДж/м3. (2.4.2-3)

бух = бНЭК — коэффициент избытка воздуха за экономайзером (см. табл.3);

I0.х.в. — энтальпия холодного воздуха,

I0.х.в = (ct)в*VH = 39,8*VH,кДж/м3, (2.4.2-4)

где (ct)в = 39,8 кДж/м3 — энтальпия 1 м3 холодного воздуха при tх.в. = 30°С; VH — теоретический объем воздуха, м3/м3 (см. табл. 4) = 9,74 м3/м3.

I0.х.в = (ct)в*VH = 39,8*9,74 = 387,652 кДж/м3, (2.4.2-5)

По таблице параметров паровых котлов tух = 162°С,

,(2.4.2-6)

(2.4.2-7)

Потеря тепла от химической неполноты сгорания q3 , %, обусловлена суммарной теплотой сгорания продуктов неполного горения, остающихся в дымовых газах (СО, Н2, СН4 и др.). Для проектируемого котла принимаем

q3 = 0,5%.

Потеря тепла от наружного охлаждения q5 , %, принимается по таблице 8 в зависимости от паропроизводительности котла D, кг/с,

кг/с, (2.4.2-8)

где D, т/ч — из исходных данных = 6,73 т/ч.

Таблица 8 — Потери теплоты от наружного охлаждения парового котла с хвостовыми поверхностями

Номинальная паропроизводительность котла

D, кг/с (т/ч)

Потеря теплоты q5 , %

1,67 (6)

2,4

2,78 (10)

1,7

4,16 (15)

1,5

5,55 (20)

1,3

6,94 (25)

1,25

Находим приблизительное значение q5 , %, для номинальной паропроизводительности 6,73 т/ч.

(2.4.2-9)

Суммарная потеря теплоты в котле:

Уq = q2 + q3 + q5 = 4,62 + 0,5 + 1,93 = 7,05 % (2.4.2-10)

Коэффициент полезного действия котла (брутто):

зК = 100 — Уq = 100 — 7,05 = 92,95 %. (2.4.2-11)

3.3 Теплопотери на нагревание инфильтрующегося наружного воздуха через наружные двери и на нагревание въезжающего транспорта

Расчетная
разность давления воздуха ∆pi,
Па, на наружную и внутреннюю поверхность
ограждений определяется для каждого
помещения по формуле:

∆pi=(H
– hi)*(γн
–- γв)+0,5ν2*ρн*(Сн
– Сп)*кν
– pint(3.4)

где
Н –
высота
здания от уровня земли до верха карниза
или устья вентиляционной шахты, м;

hi
— расчетная высота от уровня земли до
верха окон, балконных дверей, м;

γн,
γв
— удельный вес, Н/м3,
соответственно при температуре наружного
(tнБ
) и внутреннего (tв)
воздуха, определяемый по формуле:

(3.5)

ν
— скорость ветра по параметру Б, м/с;

ρн
плотность наружного воздуха, кг/м3,

Сн,
Сп
— аэродинамические коэффициенты для
наветренной и подветренной поверхностей
ограждений, равные Сн=0,8,
Сп=
— 0,6;

кν
коэффициент учета изменения скоростного
давления ветра в зависимости от высоты
здания;

pint
— условно постоянное давление воздуха,
Па, в помещении зда­ния (для жилых
зданий).

Разность
давлений определяется по формуле:

∆p
= 0,55*Н*(γн

γв)+0,03*γн*ν2,
(3.6)

Сопротивление
воздухопроницанию окон и балконных
дверей жилых зданий Rи
должно быть не менее требуемого
сопротивления воздухопроницанию Rитр,
м2·ч/кг,
определяемого по формуле

(3.7)

где

нормативная воздухопроницаемость
наружных ограждающих конструкций, для
наружных дверей 7 кг/(м2·ч).

Расход
инфильтрующегося в помещении воздуха
∑Gи,
кг/ч, определяется по формуле:

∑Gи
= 0,216,
(3.8)

где
∆pi
– разность давлений воздуха на наружной
и внутренней поверхности наружных
ограждений помещения на расчетном
этаже, Па;

А
– площади окон и наружных дверей, м2.

Расход
теплоты на нагрев инфильтрующегося
воздуха через ограждение Qи,
Вт :

Qи
= 0,28∑Gи
c(tв-tнБ),
(3.9)

где
с – удельная теплоемкость воздуха,
равная 1 кДж/(кг·ºС);

kн
– коэффициент учета влияния встречного
теплового потока в конструкции.

Согласно
, В помещении автостоянки необходимо
учесть потребность в тепле на обогрев
въезжающего в помещение подвижного
состава Qавт,
Вт, в количестве 0,029 Вт в час на один кг
массы в снаряженном состоянии на один
градус разницы температур наружного и
внутреннего воздуха:

=
0,029 ∙ Мавт
∙ (tн
– tв),
(3.10)

где
Мавт
– масса одного автомобиля;

tв,
tн
– соответственно температуры внутреннего
и наружного воздуха, °С;

Общее
количество теплопотерь на нагрев
въезжающего транспорта Qавт,
Вт, составит:

Qавт
=
∙n,
(3.11)

где
n
– количество машин на автостоянке.

Пример
расчета
теплопотерь
на нагревание инфильтрующегося наружного
воздуха через наружные двери:

1.
Определим разность
давлений Δр:

;

=
14,49 Н/м3,

=
11,98 Н/м3;

2.
Вычисляем сопротивление воздухопроницанию:

3.
Определяем расчетную разность давления
воздуха на наружную и внутреннюю
поверхность ограждения:

;

4.
Вычисляем расход инфильтрующегося
воздуха через наружную дверь:

ΣG
= 0,216·
= 21,89 кг/ч;

5.
Рассчитываем расход теплоты для
нагревания инфильтрующегося воздуха
через наружную дверь:

Вт.

Результаты
расчета сведены в таблицу 3.1.

Таблица
3.1

Расход
теплоты на нагрев инфильтрующегося
воздуха через наружные двери лестничной
клетки

№ помещения

Наименование
помещения,

tв,
ОС

Площадь
ОК, м2

Нормативная
воздухо-

проницаемость
ОК, Gн,
кг/(м2*ч)

Сопротивление
воздухопроницанию ОК Rи,(м2*ч)/КГ

Высота
здания H, м

Удельный
вес наружного

воздуха
yн,
Н/м3

Удельный
вес внутреннего воздуха yв,
Н/м3

Разность
давлений ΔР, Па

Расчетная
высота hi,
м

Расчетная
разность

давлений
Δрi, Па

Расход
инфильтрующегося воздуха Gи,
кг/ч

Теплопотери
на инфильтрацию

Qи,
Вт

1

2

3

4

5

6

7

8

9

10

11

12

13

ДД

ЛК№1,

16
°С

3,08

7

0,214

7,2

14,49

11,98

18,28

2,5

18,41

21,89

250

ДД

ЛК№2,

16
°С

3,08

7

0,214

7,2

14,49

11,98

18,28

2,5

18,41

21,89

250

Пример
расчета теплопотерь на нагревание
въезжающего транспорта:

1.
Определим теплопотери на один автомобиль:

=
0,029 ∙ 1300 ∙ (5 – (-34)) = 1470,3 Вт.

2.
Найдем общие теплопотери на
нагревание въезжающего транспорта:

Qавт
= 1470,3 ∙ 8 = 11762,4 Вт.

Определение
суммарных теплопотерь здания заключается
в расчете Qр
для каждого помещения где устанавливается
отопительный прибор и суммировании их
всех по всему зданию.

Qр=∑Q(1+∑ß)+
Qи.
(3.12)

Пример
для помещения 103 кабинет директора:

Через
наружная стену:

Q
= 0,352 ∙ 8,28 ∙ (18-(-34) = 151,56 Вт,

Qдоб=
151,56 ∙ 1,05 = 159,13 Вт.

Через
окно:

Q
= 2,046 ∙ 2,24 ∙ (18-(-34) = 238,32 Вт,

Qдоб=
238,32 ∙ 1,05 = 250,23 Вт

Qр=159,56
+ 250,32 = 410 Вт.

Результаты
расчета теплопотерь сведены в таблицу
3.2.

Способы оценки теплопотерь дома

Примерные места утечек определяют съемкой термографической карты с помощью специализированного оборудования. Для действующего строения и нового дома можно сделать расчет. Профессионалы применяют сложные методики вычислений с учетом особенностей конвекционного нагрева, других факторов. Как правило, вполне достаточно использовать упрощенный калькулятор теплопотерь на специализированном сайте online.

Типовые методики расчета:

  • по усредненным значениям для конкретного региона;
  • суммирование теплопотерь основных элементов (стен, полов, кровли) с добавлением данных по дверным и оконным блокам, вентиляции;
  • вычисление параметров каждого помещения.

Простой расчет теплопотерь зданий.

Ниже приведен довольно простой расчет теплопотерь зданий, который, тем не менее, поможет достаточно точно определить мощность, требуемую для отопления Вашего склада, торгового центра или другого аналогичного здания. Это даст возможность еще на стадии проектирования предварительно оценить стоимость отопительного оборудования и последующие затраты на отопление, и при необходимости скорректировать проект.

Куда уходит тепло? Тепло уходит через стены, пол, кровлю и окна. Кроме того тепло теряется при вентиляции помещений. Для вычисление теплопотерь через ограждающие конструкции используют формулу:

Q – теплопотери, Вт

S – площадь конструкции, м2

T – разница температур между внутренним и наружным воздухом, °C

R – значение теплового сопротивления конструкции, м2•°C/Вт

Схема расчета такая – рассчитываем теплопотери отдельных элементов, суммируем и добавляем потери тепла при вентиляции. Все.

Предположим мы хотим рассчитать потери тепла для объекта, изображенного на рисунке. Высота здания 5…6 м, ширина – 20 м, длинна – 40м, и тридцать окон размеров 1,5 х 1,4 метра. Температура в помещении 20 °С, внешняя температура -20 °С.

Считаем площади ограждающих конструкций:

пол:

20 м * 40 м = 800 м2

кровля:

20,2 м * 40 м = 808 м2

окна:

1,5 м * 1,4 м * 30 шт = 63 м2

стены:

(20 м + 40 м + 20 м + 40м) * 5 м = 600 м2 + 20 м2 (учет скатной кровли) = 620 м2 – 63 м2 (окна) = 557 м2

Теперь посмотрим тепловое сопротивление используемых материалов.

Значение теплового сопротивления можно взять из таблицы тепловых сопротивлений или вычислить исходя из значения коэффициента теплопроводности по формуле:

R – тепловое сопротивление, (м2*К)/Вт

? – коэффициент теплопроводности материала, Вт/(м2*К)

d – толщина материала, м

Значение коэффициентов теплопроводности для разных материалов можно посмотреть здесь.

пол:

бетонная стяжка 10 см и минеральная вата плотностью 150 кг/м3. толщиной 10 см.

R (бетон) = 0.1 / 1,75 = 0,057 (м2*К)/Вт

R (минвата) = 0.1 / 0,037 = 2,7 (м2*К)/Вт

R (пола) = R (бетон) + R (минвата) = 0,057 + 2,7 = 2,76 (м2*К)/Вт

кровля:

кровельные сэндвич панели из минеральной ваты толщиной 15 см

R (кровля) = 0.15 / 0,037 = 4,05 (м2*К)/Вт

окна:

значение теплового сопротивления окон зависит от вида используемого стеклопакета R (окна) = 0,40 (м2*К)/Вт для однокамерного стекловакета 4–16–4 при ?T = 40 °С

стены:

стеновые сэндвич панели из минеральной ваты толщиной 15 см R (стены) = 0.15 / 0,037 = 4,05 (м2*К)/Вт

Посчитаем тепловые потери:

Q (пол) = 800 м2 * 20 °С / 2,76 (м2*К)/Вт = 5797 Вт = 5,8 кВт

Q (кровля) = 808 м2 * 40 °С / 4,05 (м2*К)/Вт = 7980 Вт = 8,0 кВт

Q (окна) = 63 м2 * 40 °С / 0,40 (м2*К)/Вт = 6300 Вт = 6,3 кВт

Q (стены) = 557 м2 * 40 °С / 4,05 (м2*К)/Вт = 5500 Вт = 5,5 кВт

Получаем, что суммарные теплопотери через ограждающие конструкции составят:

Q (общая) = 5,8 + 8,0 + 6,3 + 5,5 = 25,6 кВт / ч

Теперь о потерях на вентиляцию.

Для нагрева 1 м3 воздуха с температуры – 20 °С до + 20 °С потребуется 15,5 Вт.

Q(1 м3 воздуха) = 1,4 * 1,0 * 40 / 3,6 = 15,5 Вт, здесь 1,4 – плотность воздуха (кг/м3), 1,0 – удельная теплоёмкость воздуха (кДж/(кг К)), 3,6 – коэффициент перевода в ватты.

Осталось определиться с количеством необходимого воздуха. Считается, что при нормальном дыхании человеку нужно 7 м3 воздуха в час. Если Вы используете здание как склад и на нем работают 40 человек, то вам нужно нагревать 7 м3 * 40 чел = 280 м3 воздуха в час, на это потребуется 280 м3 * 15,5 Вт = 4340 Вт = 4,3 кВт. А если у Вас будет супермаркет и в среднем на территории находится 400 человек, то нагрев воздуха потребует 43 кВт.

2.2 Определение нормируемых эксплуатационных тепловых потерь

Эксплуатационные
тепловые потери в водяных ТС состоят из двух видов потерь — через
теплоизоляционные конструкции и с утечками сетевой воды.

2.2.1
Определение нормируемых эксплуатационных тепловых потерь через
теплоизоляционные конструкции осуществляется для ТС на балансе энергоснабжающей
организации в виде часовых (при среднегодовых условиях работы ТС) [МВт
(Гкал/ч)] и среднемесячных [МВт (Гкал/ч)] тепловых потерь по участкам ТС (см.
п. 3.1.6 РД
153-34.0-20.523-98 ) в соответствии с материальной характеристикой (см.
таблицу настоящих
Рекомендаций), а также месячных и годовых потерь в целом по ТС на
балансе:

— тепловые
потери через изоляцию определяются раздельно по видам прокладки (подземная и
надземная) вследствие различных алгоритмов их зависимости от температур сетевой
воды и окружающей среды (грунта или воздуха) (см. пп. 3.1.6 и 3.1.8 РД
153-34.0-20.523-98 );

— нормируемые
часовые среднегодовые потери по участкам ТС в общем виде определяются формулой
(1) РД
153-34.0-20.523-98 [, ч. II

 = qнKLβ

Значения
удельных (на 1 м длины) часовых тепловых потерь qн, Вт/м [ккал/(м × ч)],
по видам прокладки определяются по нормам и в зависимости от срока
ввода ТС в эксплуатацию (см. п. 3.1.7 и
таблицы П1.1 — П1.5 РД
153-34.0-20.523-98 ):

— к удельным
тепловым потерям вводятся поправочные коэффициенты К, полученные на основании
результатов испытаний или расчета согласно положениям п. 3.1.11 РД
153-34.0-20.523-98 , и β — на
дополнительные потери тепла арматурой, компенсаторами, опорами (см. п. 3.1.6 РД
153-34.0-20.523-98 );

— нормируемые
часовые тепловые потери при среднегодовых условиях работы в целом по ТС на
балансе энергопредприятия определяются путем суммирования часовых среднегодовых
потерь по участкам (по видам прокладки);

— нормируемые
часовые среднемесячные  [МВт (Гкал/ч)] и месячные  
тепловые потери по видам прокладки определяются путем пересчета часовых
среднегодовых тепловых потерь на среднемесячные температурные условия работы ТС
(см. таблицу настоящих
Рекомендаций) и число часов работы в данном месяце;

— составляющая
ЭХ по тепловым потерям через изоляцию строится в виде графика часовых
среднемесячных [МВт (Гкал/ч)] (см. рисунок настоящих Рекомендаций) и месячных
тепловых потерь в разрезе года раздельно по видам прокладки для тепловой сети
на балансе энергоснабжающей организации.

2.2.2
Определение нормируемых эксплуатационных тепловых потерь с потерями сетевой
воды в настоящих Рекомендациях в соответствии с РД
153-34.0-20.523-98 осуществляется только для потерь с нормируемой утечкой в виде
годовых тепловых потерь   по
формуле (36) РД
153-34.0-20.523-98 (см. рисунок
данных Рекомендаций):

При этом:

— нормируемая
среднегодовая утечка сетевой воды а [м3/(ч × м3)]
принимается по РД
34.20.501-95 в размере 0,25 % среднегодового объема (емкости) ТС и
систем теплопотребления;

— среднегодовой
объем сетевой воды Vср.г (м3)
определяется исходя из объема ТС и систем теплопотребления в отопительном и
летнем периодах работы СЦТ и соответствующего числа часов работы n;

— расчет
производится в целом для ТС и подключенных систем теплопотребления на балансе
энергоснабжающей организации;

— определяются
нормируемые эксплуатационные месячные тепловые потери с утечкой сетевой воды . исходя из сезонных потерь и соответствующих
средних температур сетевой и холодной воды и числа часов работы;

— составляющая
ЭХ по потерям тепла с потерями сетевой воды строится в виде графика месячных
тепловых потерь ТС на балансе энергоснабжающей организации.

2.2.3
Энергетическая характеристика водяных ТС по показателю «тепловые потери»
определяется путем суммирования нормируемых месячных значений тепловых потерь
через тепловую изоляцию с потерями сетевой воды, а также их годовых значений.

Для оценки доли
тепловых потерь от количества переданной тепловой энергии могут быть определены
их относительные значения по месяцам и в целом за год работы ТС.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector