Тепловая мощность

Что такое тепловая энергия

При выборе источника тепла в помещении учитывается нагрузка на систему горячего водоснабжения. Многие домовладельцы не знают, что такое ГВС компонент на тепловую энергию. Это показатель, означающий норму расхода воды.

Сегодня все пользуются горячей и холодной водой, но не все знают, что такое «тепловая энергия» в квитанции ЖКХ. Если дом холодный, значит, тепловая энергия не подаётся в должном объёме. Это повод для обращения в управляющую компанию и подачи соответствующей жалобы.

Перед тем, как приступать к самостоятельным расчётам, нужно выяснить, что значит ГВС-компонент на ТЭ, как его рассчитать и вообще что это за коэффициент в тарифе. Когда мы видим в квитанции словосочетание «За нагрев воды», то не все понимают, что именно складывается за этой услугой. А между тем этот показатель был введён в 2013 году.

Сумма к оплате включает в себя несколько составляющих:

  • потеря тепла в трубах;
  • действующий тариф на энергию;
  • расходы на содержание батарей и центральной тепловой системы;
  • расходы на транспортировку горячей воды.

Самый простой способ узнавать точные показатели – установить счётчик. Также многие собственники задаются вопросом: что это такое – «подогрев воды» в квитанции ЖКХ. Это услуга, предоставляемая управляющей компанией по поставке тёплой воды в дома.

Чтобы не переплачивать, рекомендуется проверить расчёты самостоятельноФОТО: static.ngs.ru

ГВС в квитанции делится на два пункта – подача и нагревФОТО: i0.u-mama.ru

Физический смысл норматива потребления отопления

Многоквартирные дома в законодательстве РФ, в том числе в целях расчета объема потребления теплоэнергии для отопления, рассматриваются как неделимые единицы. То есть МКД — это единый теплотехнический объект, потребляющий теплоэнергию для отопления входящих в его состав помещений. И именно общий объем потребленной всем домом теплоэнергии важен при расчетах исполнителя коммунальных услуг (ИКУ) с ресурсоснабжающей организацией (РСО).

Правила установления и определения нормативов потребления коммунальных услуг, утвержденные ПП РФ от 23.05.2006 N306 (далее — Правила 306) с целью расчета норматива потребления коммунальной услуги по отоплению предусматривают сначала расчет количества тепловой энергии, необходимой для отопления многоквартирного дома или жилого дома в течение года (пункт 19 Приложения 1 к Правилам 306, формула 19). Год выбран в качестве периода, за который производится расчет, для дальнейшего получения усредненного значения норматива потребления теплоэнергии в месяц, поскольку в разные календарные месяцы потребление теплоэнергии на отопление будет, разумеется, разным, а оплата по нормативу предполагает одинаковый размер платы за отопление либо в течение отопительного периода, либо равномерно в течение календарного года, в зависимости от выбранного субъектом РФ способа оплаты отопления .

Поскольку многоквартирный дом состоит из совокупности жилых и нежилых помещений и мест общего пользования (общего имущества), при этом общее имущество на праве общедолевой собственности принадлежит собственникам отдельных помещений дома, весь объем тепловой энергии, поступающей в дом, потребляется именно собственниками помещений такого дома. Следовательно, и оплата теплоэнергии, потребленной на отопление, должна производиться собственниками помещений МКД. И тут возникает вопрос — каким образом распределить стоимость всего объема теплоэнергии, потребленной многоквартирным домом, между собственниками помещений этого МКД?

Руководствуясь вполне логичными выводами о том, что потребление теплоэнергии в каждом конкретном помещении зависит от размера такого помещения, Правительство РФ установило порядок распределения объема теплоэнергии, потребляемой всем домом, среди помещений такого дома пропорционально площади этих помещений. Такой порядок предусматривают как Правила 354 (распределение показаний общедомового прибора учета отопления пропорционально долям площадей помещений конкретных собственников в общей площади всех помещений дома в собственности), так и Правила 306 при установлении норматива потребления отопления.

Пункт 18 Приложения 1 к Правилам 306 устанавливает: «18. Норматив потребления коммунальной услуги по отоплению в жилых и нежилых помещениях (Гкал на 1 кв.м общей площади всех жилых и нежилых помещений в многоквартирном доме или жилого дома в месяц) определяется по следующей формуле (формула 18):

,

где: — количество тепловой энергии, потребляемой за один отопительный период многоквартирными домами, не оборудованными коллективными (общедомовыми) приборами учета тепловой энергии, или жилыми домами, не оборудованными индивидуальными приборами учета тепловой энергии (Гкал), определяемое по формуле 19; — общая площадь всех жилых и нежилых помещений в многоквартирных домах или общая площадь жилых домов (кв.м); — период, равный продолжительности отопительного периода (количество календарных месяцев, в том числе неполных, в отопительном периоде)».

Юридические основания для перерасчета тепловой нагрузки

Право потребителей на расчет тепловых нагрузок закреплено

  • в каждом типовом договоре на снабжение тепловой энергией, а также
  • в приказе Министерства Регионального Развития РФ от 28.12.2009 № 610 «Об утверждении правил установления и изменения (пересмотра) тепловых нагрузок».

В приказе Министерства Регионального Развития № 610 установлено, что для пересмотра договорных величин необходимо разработать технический отчет с расчетом тепловых нагрузок.

Отчет должен обосновывать изменение или снижение тепловой нагрузки для объекта.

Также, в приказе №610 установлено, что расчет тепловой нагрузки на отопление, вентиляцию и ГВС может быть пересмотрен после внедрения энергосберегающих мероприятий, а именно, после:

  • капитального ремонта,
  • реконструкции внутренних инженерных сетей, которая способствует снижению потерь через изоляцию и утечки,
  • увеличения тепловой защиты здания или объекта,
  • внедрения других энергосберегающих мероприятий.

Здесь можно скачать приказ Министерства Регионального Развития РФ от 28.12.2009 № 610 «Об утверждении правил установления и изменения (пересмотра) тепловых нагрузок».

Формула расчета тепловой мощности с учетом дополнительных факторов

Несмотря на введение коэффициента потерь тепла предыдущая формула не способна отразить всевозможные нюансы помещений. Наример теплопотери квартиры расположенной на 5 этаже в центре девятиэтажного здания ниже, чем у угловой квартиры на последнем этаже. Для получения более точных данных рекомендуем воспользоваться формулой:

Q = (100 Вт/м2 х S х φ 1 х φ 2 х φ 3 х φ 4 х φ 5 х φ 6 х φ 7)/1000,

Где:

  • S – площадь помещения в м2.
  • φ 1 – потери тепла через окна:

    • 0,85 – тройной стеклопакет;
    • 1 – двойной стеклопакет;
    • 1,27 – одинарный стеклопакет (стандартный).
  • φ 2 – утепление стен (теплоизоляция):

    • 0,854 – высокое;
    • 1 – кладка в два кирпича;
    • 1,27 – низкое.
  • φ 3 – соотношение общей площади окон к площади пола помещения в %:

    • 1,2 – 50%;
    • 1,1 – 40%;
    • 1 – 30%;
    • 0,9 – 20%;
    • 0,8 – 10%.
  • φ 4 – коэффициент умножения в зависимости от температуры внешней среды в минусовых значениях С:

    • 1,5 – -35С;
    • 1,3 – -25С;
    • 1,1 – -20С;
    • 0,9 – -15С;
    • 0,7 – -10С.
  • φ 5 – сколько стен имеют контакт со внешней средой (выходят на улицу):

    • 1,4 -4;
    • 1,3 -3;
    • 1,2 -2;
    • 1,1 -1.
  • φ 6 – теплоизоляция помещения находящегося сверху над расчетным:

    • 0,8 – обогреваемое;
    • 0,9 – утеплённое, но не отапливаемое;
    • 1 — холодный чердак или крыша.
  • φ 7 – высота в метрах:

    • 1,2 – 4,5м;
    • 1,15 – 4м;
    • 1,1 – 3,5м;
    • 1,05 – 3м;
    • 1 – 2,5м.

Как видите в формуле расчета тепловой мощности обогревательного оборудования учтено значительно больше значений влияющих на теплопотери.

Пример расчета

Вводные данные: гостиная в частном доме, ВхШхД – 4х5х6 м. Дом построен кладкой в два кирпича, на утепленном фундаменте с большим панорамным окном, со стандартным остеклением, занимающим 50% от площади пола. Средняя температура зимой -15С. На втором этаже отапливаемые спальни, две стены выходят на улицу.

Выясняем требуемые значения и коэффициенты:

  • S – 30м2.
  • φ 1 – 1,27.
  • φ 2 – 1.
  • φ 3 – 1,2.
  • φ 4 – 0,9.
  • φ 5 – 1,2.
  • φ 6 – 0,8.
  • φ 7 – 1,15.

Подставляем значения в формулу:

Q = (100 Вт/м2 х S х φ 1 х φ 2 х φ 3 х φ 4 х φ 5 х φ 6 х φ 7)/1000,

Q = (100 Вт/м2 х 30 х 1,27 х 1 х 1,2 х 0,9 х 1,2 х 0,8 х 1,15)/1000 = 4,543 кВт

Исходя из этого уточненного расчета, получается, что нам нужно организовать отопление на 4,5-5 кВт.

Эта формула предпочтительна для расчета тепловой мощности отопительных систем, причем она подходит для расчета отопления в небольших жилых помещениях и в организации отопления промышленных объектов.

«Количество теплоты. Удельная теплоёмкость»

Количество теплоты

Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количествоv теплоты.

Количество теплоты – это изменение внутренней энергии тела в процессе теплопередачи без совершения работы.  Количество теплоты обозначают буквой Q.

Работа, внутренняя энергия и количество теплоты измеряются в одних и тех же единицах — джоулях (Дж), как и всякий вид энергии.

В тепловых измерениях в качестве единицы количества теплоты раньше использовалась особая единица энергии — калория (кал), равная количеству теплоты, необходимому для нагревания 1 грамма воды на 1 градус Цельсия (точнее, от 19,5 до 20,5 °С). Данную единицу, в частности, используют в настоящее время при расчетах потребления тепла (тепловой энергии) в многоквартирных домах. Опытным путем установлен механический эквивалент теплоты — соотношение между калорией и джоулем: 1 кал = 4,2 Дж.

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество тепла требуется ему для нагревания. То же самое и с охлаждением.

Количество теплоты, необходимое для нагревания тела зависит еще и от рода вещества, из которого это тело сделано. Эта зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.

Удельная теплоёмкость

Удельная теплоёмкость – это физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К). Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой с. Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг °К.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Поскольку кол-во теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С. В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Количество теплоты Q, необходимое для нагревания тела массой m от температуры t1°С до температуры t2°С, равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

Q = c ∙ m (t2 — t1

По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

Это конспект по теме «Количество теплоты. Удельная теплоёмкость». Выберите дальнейшие действия:

  • Перейти к следующему конспекту:  «Уравнение теплового баланса»
  • Вернуться к списку конспектов по Физике
  • Посмотреть решение типовых задач на количество теплоты

Теплоёмкость

Различные вещества обладают разной способностью накапливать тепло; это зависит от их молекулярной структуры и плотности. Количество теплоты, необходимое для повышения температуры единицы массы вещества на один градус (1 °С или 1 К), называется его удельной теплоемкостью. Теплоемкость измеряется в  Дж/(кг•К).

Обычно различают теплоемкость при постоянном объёме (CV) и теплоемкость при постоянном давлении (СP), если в процессе нагревания поддерживаются постоянными соответственно объём тела или давление. Например, чтобы нагреть на 1 К один грамм воздуха в воздушном шаре, требуется больше теплоты, чем для такого же его нагрева в герметичном сосуде с жесткими стенками, поскольку часть энергии, сообщаемой воздушному шару, расходуется на расширение воздуха, а не на его нагревание. При нагревании при постоянном давлении часть теплоты идёт на производство работы расширения тела, а часть — на увеличение его внутренней энергии, тогда как при нагревании при постоянном объёме вся теплота расходуется на увеличение внутренней энергии; в связи с этим СР всегда больше, чем CV. У жидкостей и твёрдых тел разница между СР и CV сравнительно мала.

Понятие энергии, единицы измерения

Тема 2. Энергия и энергоресурсы

С понятием энергия человек сталкивается постоянно и подчас не задумывается о глубоком смысле. Энергия определяется как общая количественная мера различных форм движения материи. В соответствии с разнообразием форм движения и различают механическую, тепловую, электрическую, ядерную, химическую и другие виды энергии.

В соответствии с законом сохранения, открытым М.В. Ломоносовым, энергия не теряется, а сохраняется и преобразуется в другие виды энергии.

Поэтому энергия является тем стержнем, который связывает воедино все процессы и явления материального мира. Для объектов энергетики энергетический анализ является основным инструментом исследования процессов преобразования энергии с проверкой на каждом этапе технологического процесса выполнения условия баланса энергии. В процессе преобразования часть энергии может изменять свой вид, что часто усложняет количественный учет и проверку баланса.

Именно потребности измерений энергии на заре развития электротехники стимулировали активное обсуждение на международных выставках 1851 года в Лондоне и 1855 года в Париже необходимости введения единой системы мер и весов. На I Международном конгрессе электриков, состоявшемся в 1881 году, был предложен проект полной системы единиц СГС, в основу которой были положены сантиметр как единица длины, грамм как единица массы и секунда как единица времени. Но применение этой системы в инженерных расчетах создавало определенные трудности из-за малости основных единиц. В 1918 году во Франции, а в 1927 году и в СССР была принята система единиц МТС на основе метра, тонны и секунды. Однако и она оказалась неудобной, но уже из-за другой крайности.

В октябре 1960 года XI Генеральная конференция по мерам и весам утвердила проект единой системы единиц, над которым специальная комиссия работала с 1954 года. Эта система стала известна под наименованием Международная система единиц СИ. В 1961 году в СССР был утвержден ГОСТ 9867-61 «Международная система единиц», которым устанавливалось предпочтительное применение единиц СИ во всех областях науки, техники, образования и народного хозяйства.

Основными единицами СИ являются семь следующих единиц: длины – метр, массы – килограмм, времени – секунда, силы электрического тока – ампер, температуры – кельвин, количества вещества – моль, силы света – кандела.

Кроме основных единиц в состав СИ вводится большое число производных величин, определяемых по отраслям науки и техники. Ниже в табл. 3 приведены производные единицы СИ, которые применяются в электротехнике.

Таким образом, несмотря на разнообразие видов энергии все они измеряются в джоулях. Для механической работы, например, один джоуль определяется работой, выполненной единицей силы на пути в один метр, т.е. 1Дж=1Н#903 1м.

Производные единицы системы СИ Таблица 3

Пример перерасчета и уменьшения тепловых нагрузок

Далее мы рассмотрим пример реального уменьшения тепловых нагрузок и затрат на отопления на одном из выполненных нами объектов.

Объект №1 — помещение коммерческого назначения

Помещение коммерческого назначения на первом этаже пяти-этажного здания в Москве.

Основные данные по объекту:

Адрес объекта г. Москва
Этажность здания 5 этажей
Этаж на котором расположены обследуемые помещения 1-й
Площадь обследуемых помещений 112,9 м2
Высота этажа 3,0 м
Система отопления Однотрубная
Температурный график 95-70 оС
Расчетный температурный график для этажа на котором находится помещение 75-70 оС
Тип розлива Верхний
Расчетная температура внутреннего воздуха + 20 оС
Отопительные радиаторы, тип, количество Радиаторы чугунные М-140-АО – 6 шт. Радиатор биметаллический Global (Глобал) – 1 шт.
Диаметр труб системы отопления, мм Ду25
Длина подающего трубопровода системы отопления, м L = 28,0 м.

Горячее водоснабжение и вентиляция на данном объекте отсутствовали.

Договорные тепловые нагрузки составляли 0,02 Гкал/час или 47,67 Гкал/год.

Расчет теплопередачи установленных радиаторов отопления с учетом потерь в трубопроводах и способа установки составил 0,007454 Гкал/час.

Максимальный часовой расход на отопление в трубопроводах составил 0.001501 Гкал/час.

В итоге, максимальный часовой расход на отопление составил 0,008955 Гкал/час или 23 Гкал/год.

Годовая экономия = 47,67 — 23 = 24,67 Гкал/год.

При средней стоимости Гкал 1,7 тысяч рублей, годовая экономия на отоплении для объекта площадью 112 м. кв. составила 42 тысячи рублей.

Объект №2 — нежилое помещение

Основные данные по объекту:

Адрес объекта г. Москва
Этажность здания 10 этажей
Этаж на котором расположены обследуемые помещения 1-й, 2-й
Площадь обследуемых помещений 472 м2
Высота этажа 2,95 м
Система отопления Однотрубная
Температурный график 95-70 о С
Для 1 этажа – 72,5-70 о С

Для 2 этажа – 75-72,5 о С

2 этаж = 114,0 м.

Расчет теплопередачи установленных радиаторов отопления с учетом потерь в трубопроводах и способа установки составил 0,010199 Гкал/ч.

Максимальный часовой расход на отопление в трубопроводах

  • на первом этаже составил 0,002319 Гкал/ч,
  • на втором этаже составил 0,005205 Гкал/ч.

Схема расположения радиаторов отопления на объекте

Максимальный часовой расход на отопление составил 0,017724 Гкал/ч.

Годовой расход за отопительный период составил 43,8 Гкал/год.

Тепловая нагрузка на горячее водоснабжение составила 0,88 Гкал/год.

Максимальное годовое потребление для данного объекта составляет 44,7 Гкал/год.

Договорное потребление для данного объекта составляет 162,36 Гкал/год.

Годовая экономия составила 117,66 Гкал/год или 200 тысяч рублей.

  • Энергоаудит зданий и сооружений
  • Энергоаудит систем водоснабжения
  • Способы экономии тепла

РОЛЬ ТЕПЛОТЫ И ЕЕ ИСПОЛЬЗОВАНИЕ

Глобальные процессы теплообмена не сводятся к нагреванию Земли солнечным излучением. Массивными конвекционными потоками в атмосфере определяются суточные изменения погодных условий на всем земном шаре. Перепады температуры в атмосфере между экваториальными и полярными областями совместно с кориолисовыми силами, обусловленными вращением Земли, приводят к появлению непрерывно изменяющихся конвекционных потоков, таких, как пассаты, струйные течения, а также теплые и холодные фронты. См. также КЛИМАТ; МЕТЕОРОЛОГИЯ И КЛИМАТОЛОГИЯ.

Перенос тепла (за счет теплопроводности) от расплавленного ядра Земли к ее поверхности приводит к извержению вулканов и появлению гейзеров. В некоторых регионах геотермальная энергия используется для обогрева помещений и выработки электроэнергии.

Теплота – непременный участник почти всех производственных процессов. Упомянем такие наиболее важные из них, как выплавка и обработка металлов, работа двигателей, производство пищевых продуктов, химический синтез, переработка нефти, изготовление самых разных предметов – от кирпичей и посуды до автомобилей и электронных устройств.

Многие промышленные производства и транспорт, а также теплоэлектростанции не могли бы работать без тепловых машин – устройств, преобразующих теплоту в полезную работу. Примерами таких машин могут служить компрессоры, турбины, паровые, бензиновые и реактивные двигатели.

Одной из наиболее известных тепловых машин является паровая турбина, в которой реализуется часть цикла Ранкина, используемого на современных электростанциях. Упрощенная схема этого цикла представлена на рис. 9. Рабочую жидкость – воду – превращают в перегретый пар в паровом котле, нагреваемом за счет сжигания ископаемого топлива (угля, нефти или природного газа). Пар высокого давления вращает вал паровой турбины, которая приводит в действие генератор, вырабатывающий электроэнергию. Отработанный пар конденсируется при охлаждении проточной водой, которая поглощает часть теплоты, не использованной в цикле Ранкина. Далее вода подается в охлаждающую башню (градирню), откуда часть тепла уходит в атмосферу. Конденсат с помощью насоса возвращают в паровой котел, и весь цикл повторяется.

Все процессы в цикле Ранкина иллюстрируют описанные выше начала термодинамики. В частности, согласно второму началу, часть энергии, потребляемой электростанцией, должно рассеиваться в окружающей среде в виде теплоты. Оказывается, что таким образом теряется примерно 68% энергии, первоначально содержавшейся в ископаемом топливе. Заметного повышения КПД электростанции можно было бы достигнуть, лишь повысив температуру парового котла (которая лимитируется жаропрочностью материалов) или понизив температуру среды, куда уходит тепло, т.е. атмосферы.

Другой термодинамический цикл, имеющий большое значение в нашей повседневной жизни, – это парокомпрессорный холодильный цикл Ранкина, схема которого представлена на рис. 10. В холодильниках и бытовых кондиционерах энергия для его обеспечения подводится извне. Компрессор повышает температуру и давление рабочего вещества холодильника – фреона, аммиака или углекислого газа. Перегретый газ подается в конденсатор, где охлаждается и конденсируется, отдавая тепло окружающей среде. Жидкость, выходящая из патрубков конденсатора, проходит через дросселирующий клапан в испаритель, и часть ее испаряется, что сопровождается резким понижением температуры. Испаритель отбирает у камеры холодильника тепло, которое нагревает рабочую жидкость в патрубках; эта жидкость подается компрессором в конденсатор, и цикл снова повторяется.

Холодильный цикл, представленный на рис. 10, можно использовать и в тепловом насосе. Такие тепловые насосы летом отдают тепло горячему атмосферному воздуху и кондиционируют помещение, а зимой, наоборот, отбирают тепло у холодного воздуха и обогревают помещение.

Важным источником теплоты для таких целей, как производство электроэнергии и транспортные перевозки, служат ядерные реакции. В 1905 А.Эйнштейн показал, что масса и энергия связаны соотношением E = mc2, т.е. могут переходить друг в друга. Скорость света c очень велика: 300 тыс. км/с. Это означает, что даже малое количество вещества может дать огромное количество энергии. Так, из 1 кг делящегося вещества (например, урана) теоретически можно получить энергию, которую за 1000 суток непрерывной работы дает электростанция мощностью 1 МВт.

Теплоотдача батарей из разных материалов

Выбирая радиатор отопления, следует помнить, что они отличаются по уровню теплоотдачи. Покупке батарей для дома или квартиры должно предшествовать внимательное изучение характеристик каждой из моделей. Нередко сходные по форме и габаритам приборы обладают разной теплоотдачей.

Чугунные радиаторы. Эти изделия имеют небольшую поверхность теплоотдачи и отличаются незначительной теплопроводностью материала изготовления. Номинальная мощность у секции чугунного радиатора, такого как МС-140, при температуре теплоносителя, равного 90°С, составляет примерно 180 Вт, но данные цифры получены в лабораторных условиях (детальнее: «Какая тепловая мощность чугунных радиаторов отопления»). В основном теплоотдача осуществляется за счет излучения, а на долю конвекции приходится всего лишь 20%.

Стальные радиаторы. В них сочетаются положительные характеристики секционных и конвекционных приборов. Состоят они, как видно на фото, из одной или нескольких панелей, у которых внутри перемещается теплоноситель. Чтобы теплоотдача стальных панельных радиаторов была больше, с целью повышения мощности к панелям приваривают специальные ребра, функционирующие как конвектор.

Потребителям следует знать, что теплоотдача стальных радиаторов отопления значительно уменьшается в случае снижения температуры теплоносителя. По этой причине, если в системе теплоснабжения будет циркулировать вода, подогретая до 60-70°С, показатели этого параметра могут сильно отличаться от данных, предоставляемых на эту модель производителем.

Алюминиевые радиаторы. Их теплоотдача намного выше, чем у стальных и чугунных изделий. Одна секция обладает тепловой мощностью, равной до 200 Вт, но у данных батарей имеется особенность, ограничивающая их применение. Она заключается в качестве теплоносителя. Дело в том, что при использовании загрязненной воды изнутри поверхность алюминиевого радиатора подвергается коррозийным процессам. Поэтому, даже при отличных показателях мощности, батареи из этого материала следует устанавливать в частных домовладениях, где используется индивидуальная отопительная система.

Биметаллические радиаторы. Данная продукция по показателю теплоотдачи ни в чем не уступает алюминиевым приборам. Тепловой поток у биметаллических изделий в среднем равен 200 Вт, но к качеству теплоносителя они не настолько требовательны. Правда их высокая цена не позволяет многим потребителям установить эти устройства.

Как правильно передать показания

Квартирный измеритель тепла функционально намного проще современного мобильного телефона, но у пользователей периодически возникают непонимания процесса снятия и отправки показаний дисплея.

Для предотвращения подобных ситуаций, перед началом процедуры снятия и передачи показаний, рекомендуется внимательно изучить его паспорт, в котором даны ответы на большинство вопросов, связанных с характеристиками и обслуживанием устройства.

В зависимости от конструктивных особенностей прибора, съем данных производят следующими способами:

  1. С жидкокристаллического дисплея путем визуальной фиксации показаний с различных разделов меню, которые переключаются кнопкой.
  2. ОРТО передатчик, который включают в базовую комплектацию европейских приборов. Способ позволяет вывести на ПК и распечатать расширенную информацию о работе прибора.
  3. M-Bus модуль входит в поставку отдельных счетчиков с целью подключения устройства к сети централизованного сбора данных теплоснабжающими организациями. Так, группу приборов объединяют в слаботочную сеть кабелем «витая пара» и подсоединяют к концентратору, который их периодически опрашивает. После формируется отчет и доставляется в теплоснабжающую организацию, либо выводится на дисплей компьютера.
  4. Радиомодуль, входящий в поставку некоторых счетчиков, передает данные беспроводным способом, на расстояние, достигающее нескольких сотен метров. При попадании приемника в радиус действия сигнала, показания фиксируются и доставляются в теплоснабжающую организацию. Так, приемник иногда закрепляют на мусоровоз, который при следовании по маршруту ведет сбор данных с близлежащих счетчиков.

Архивирование показаний

Все электронные тепловые счетчики сохраняют в архиве данные о накопленных показателях расхода тепловой энергии, времени работы и простоя, температуры теплоносителя в прямом и обратном трубопроводе, общее время наработки и коды ошибок.

Стандартно прибор настраивается на различные режимы архивирования:

  • часовой;
  • суточный;
  • месячный;
  • годовой.

Некоторые из данных, такие как общее время наработки и коды ошибок считываются только при помощи ПК и установленного на нем специального программного обеспечения.

Передача показаний через интернет

Одним из наиболее удобных способов передачи показаний о потребленной тепловой энергии в учреждения по ее учету является передача через интернет. Его удобство и практичность заключается в возможности самостоятельно контролировать оплату и задолженность, а также отслеживать потребление тепла в разные периоды без пребывания в очередях и при затратах незначительного количества времени.

Для этого необходимо наличие персонального компьютера, подключенного к сети и адрес сайта контролирующей организации, а также логин и пароль личного кабинета, после входа в который откроется форма ввода показаний. Для предупреждения возникновения разногласий при возможном сбое или неполадках на сайте, желательно делать «скрины» экрана после ввода информации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector