Актуальные буквенные и графические обозначения на электрических схемах
Содержание:
- Ведущие производители реле
- Условные графические обозначения ЭРЭ в схемах электрических, радиотехнических и автоматизации
- Обозначения электрической проводки на схемах
- Виды схем в электрике
- Что такое реле времени?
- История создания
- ГОСТ 2.768-90 Единая система конструкторской документации (ЕСКД). Обозначения условные графические в схемах. Источники электрохимические, электротермические и тепловые, ГОСТ от 26 октября 1990 года №2.768-90
- 1. Условные графические обозначения электрохимических источников
- 2. Условные графические обозначения электротермических источников
- 3. Условные графические обозначения источников тепла
- 4. Условные графические обозначения генераторов мощности
- ПРИЛОЖЕНИЕ (справочное). Соотношение размеров основных условных графических обозначений
- Стандартные условные графические и буквенные обозначения элементов электрических схем.
- Основные виды реле и их назначение
- Монтажные чертежи (схемы) и контакторы
- Выводы и полезное видео по теме
Ведущие производители реле
Производитель | Изображение | Описание |
Finder (Германия) | Компания Финдер производит реле и таймеры и занимает среди европейских производителей третье место. Производитель выпускает реле:
Продукция компании имеет сертификаты ISO 9001 и ISO 14001. |
|
АО НПК «Северная заря» (Россия) | Основная продукция российского производителя – якорные электромагнитные коммутационные устройства для специального и индустриального использования, а также слаботочные реле времени с контактными и бесконтактными выходами. | |
Omron (Япония) | Японская компания производит высоконадежные радиоэлектронные компоненты, среди которых:
|
|
COSMO Electronics (Тайвань) | Корпорация производит радиотехнические компоненты, среди которых можно выделить релейные компоненты, которые с 1994 года получили сертификат по стандарту ISO 9002.
Продукция компании широко применяется в телекоммуникации, промышленном и медицинском оборудовании, бытовой технике и автомобильном оборудовании. |
|
American Zettler | Более 100 лет компания Zettler держит лидерство и устанавливает стандарты работы и качества электротехнических элементов. Этот производитель выпускает более 40 видов КУ, которые удовлетворяют потребности самых различных проектов.
Продукция компании широко применяется в телекоммуникации, периферийной вычислительной технике, средствах управления и прочих типах электронного и электрического оборудования. |
Условные графические обозначения ЭРЭ в схемах электрических, радиотехнических и автоматизации
65 — гнездо разъемною контактного соединения,
66 — контакт разборного соединения например с помощью зажима
67 — контакт неразборного соединения, например осуществленного пайкой
68 — выключатель кнопочный однополюсный нажимной с Замыкающим контактом самовозвратом
69 — контакт коммутационного устройства размыкающий, общее обозначение
70 — контакт коммутационного устройства (выключателя, реле) замыкающий, общее обозначение. Выключатель однополюсный.
71 — контакт коммутационного устройства переключающий, общее обозначение. Однополюсный переключатель на два направления.
72— контакт переключающий трехпозиционный с нейтральным положением
73 — контакт замыкающий без самовозврата
74 — выключатель кнопочный нажимной с размыкающим контактом
75 — выключатель кнопочный вытяжной с замыкающим контактом
76 — выключатель кнопочный нажимной с возвратом кнопки,
77 — выключатель кноночный вытяжной с размыкающим контактом
78 — выключатель кнопочный нажимной с возвратом посредством вторичного нажатия кнопки,
79 — реле электрическое с замыкающим размыкающим и переключающим контактами,
80 — реле поляризованное на одно направление тока в обмотке с нейтральным положением
81 — реле поляризованное на оба направления тока в обмотке с нейтральным положением
82 — реле электротепловое без самовозврата, с возвратом посредством вторичного нажатия кнопки,
83- разъемное однополюсное соединение
84 — гнездо пятипроводного контактного разъемного соединения,
85 штырь контактного разъемного коаксиального соединения
86 — гнездо контактною соединения
87 — штырь четырехпроводного соединения,
88 гнездо четырехпроводного соединения
89 — перемычка коммутационная размыкающая цепь
{SOURCE}
Обозначения электрической проводки на схемах
Основой любой электрической системы являются кабели и провода, через которые проходит электрический ток к потребителям энергии. Большинство кабелей на схемах электропроводки обозначаются линиями, соединяющими различные элементы цепи, к примеру, электрический щит, распределительную коробку и розетки в комнате.
Действующие нормы и правила составления электрических чертежей требуют делить всю электрическую проводку здания или сооружения на три основные группы – провода, электрические связи и кабели, причем, каждая из таких групп должна отображаться на схеме различными графическими обозначениями, расшифровка которых обязательно должна присутствовать в пояснительной документации, это важное требование для согласования электропроекта
Обозначения на схемах выключателей и розеток
Каждому пользователю электрической сети прекрасно известно, что такое розетка и выключатель. Розетка предназначена для присоединения к электрической сети различных приборов, с возможностью ручного разрыва связи. Выключатели требуются для управления системой освещения любого строения.
Обозначения на схемах электроснабжения розеток и выключателей, также регламентируется нормами ГОСТа, вступившими в силу в 1974 году. Если говорить о розетках, то действующие правила выделяют в таком оборудовании 3 основные группы по методу установки: скрытые, открытые, а также блоки, содержащие розетку и выключатель.
Каждая группа включает в себя различные виды электрических устройств, выделяют розетки однополюсные, двухполюсные, трехполюсные, двух- и трех полюсные с защитой контакта.
Выключатели на схемах электрики также имеют различные обозначения, в зависимости от типа и характеристик устройства. По конструктивным особенностям, выключатели разделяют на одно-, двух-, трехполюсные, а также выделяют группы однополюсных сдвоенных и строенных выключателей.
На электрических схемах должны обозначаться все элементы электрической системы, в том числе и оборудование, предназначенное для освещения комнат. В таблице выше представлены общепринятые обозначения для используемых на схемах светильников и прожекторов при раздельном составлении проекта.
В случаях отображения элементов освещения на совмещенных планах, для обозначения элементов системы освещения могут применяться обозначения, представленные в следующей таблице.
Несмотря на то, что электронные схемы для дома могут работать только за счет проводов, выключателей, розеток и светильников, такие сети невозможно назвать надежными и безопасными для человека. Современные правила организации электрических установок требуют использования дополнительного оборудования для защиты системы и обеспечения ее продолжительного, бесперебойного функционирования, а именно – устройства защиты, автоматические выключатели и т.д.
Ниже вы можете воспользоваться онлайн-калькулятором для рассчёта стоимости проектирования сетей электроснабжения:
Виды схем в электрике
Для составления и чтения различных схем обычно требуются разные элементы. Типов схем есть много, но в электрике обычно используются:
-
Функциональные, на которых отображаются основные узлы устройства, без детализации. Внешне выглядит как набор прямоугольников с проложенными между ними связями. Дает общее представление о функционировании объекта.
-
Принципиальные. Этот тип схем подробный, с указанием каждого элемента, его контактов и связей. Есть принципиальные схемы устройств, есть — электросетей. Принципиальные схемы могут быть однолинейными и полными. На однолинейных изображены только силовые цепи, а управление и контроль прорисованы на отдельном листе. Если электросеть или устройство несложное, все можно разместить на одном листе. Это и будет полная принципиальная схема.
-
Монтажная. На монтажных схемах присутствуют не только элементы, но и указано их точное расположение. В случае с электросетями (проводкой в доме или квартире) указаны конкретные места расположения светильников, выключателей, розеток и других элементов. Часто тут же проставлены расстояния и номиналы. На монтажных схемах устройств указано расположение деталей на печатной плате, порядок и способ их соединения.
Есть еще много других видов электрических схем, но в домашней практике они не используются. Исключение — трасса прохождения кабелей по участку, подвод электричества к дому. Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема.
Что такое реле времени?
Надо полагать, что читатель этой статьи — не специалист в вопросах электротехники, а лишь пытливый пользователь, старающийся расширить свой кругозор и применить полученную информацию в повседневной жизни. Поэтому для начала будет полезно вспомнить, что же скрывается под общим термином «реле»?
Не будем приводить длинную «научную» формулировку этого понятия – она может быть не вполне понятна начинающему. А если говорить простыми словами, то реле – это электромеханическое или электронное устройство, которое производит коммутацию (соединение или разрыв) электрической цепи при получении внешнего управляющего сигнала. Если точнее, то срабатывание происходит, когда внешнее воздействие достигает какой-то заданной величины.
Первые реле были изобретены, изготовлены и применены еще в середине XIX века – они стали незаменимым компонентом аппаратов бурно развивающейся в те времена телеграфной связи. С тех пор, безусловно, эти устройства прошли длинный путь доработок и усовершенствований, повысилась их надежность, появились новые типы, способные работать в самых разных условиях эксплуатации. Но принцип остался неизменным – внешнее управляющее воздействие руководит замыканием, размыканием или переключением электрических цепей.
На схеме очень наглядно показан основной принцип работы электромеханического реле. Ну а количество контактов и схема их переключения при срабатывании устройства далеко не ограничивается этими двумя примерами.
По большей части реле управляются электрическими сигналами – когда показатели силы тока или напряжения достигают определенной величины. Но, кстати, управляющее воздействие вовсе не обязательно является электрическим. Существуют реле, срабатывание которых вызывается изменением давления в трубопроводе, температуры окружающей среды, освещенности объекта и другие. Все это открывает очень широкие возможности автоматизации и обеспечения безопасности эксплуатации разнообразной электрической техники.
Реле давления – в бытовых условиях обычно ставится в цепи питания насосного оборудования, что позволяет автоматизировать работу систем автономного водоснабжения или отопления.
Можно добавить, что в наше время наряду с электромеханическими реле все шире используются «твердотельные» — электронные ключи, в которых переключение контактов происходит за свет использования каскадов полупроводниковых элементов или интегральных микросхем.
Теперь – к вопросу о том, что же такое реле времени.
А подсказка кроется в самом названии. Это в принципе такое же реле, но срабатывание которого происходит с определенной задержкой после подачи (или снятия) управляющего сигнала. Или же коммутация цепей производится с определенным алгоритмом по времени.
Такие устройства нашли очень широкое применение в автоматизации промышленного оборудования. Но их широко используют и в бытовых условиях. Например, на них можно переложить часть забот по управлению осветительными приборами, климатическим оборудованием или системами вентиляции, с получением весьма впечатляющего эффекта экономии электроэнергии. Появляется возможность производить в заданное время необходимые действия с бытовыми электрическими приборами даже в отсутствие хозяев или без их вмешательства. Одним словом, реле времени способны значительно упростить жизнь владельцам дома.
Электромеханическое аналоговое реле времени в корпусе под установку на стандартную DIN-рейку. Даже внешне некоторые приборы такого предназначения напоминают обычные часы.
Это была, так сказать, общая информация. А теперь перейдем к более пристальному рассмотрению разнообразия этих устройств и алгоритмов их работы.
История создания
Первенство создания реле спорно. Некоторые утверждают, что впервые это устройство было сконструировано в 1830—1832 гг. русским ученым Шиллингом П.Л. и являлось основным элементом вызывающего механизма в разработанном им же варианте телеграфа.
Другие научные историки приписывают первенство изобретения известному физику Дж. Генри, который в 1835 г. разработал контактное реле во время усовершенствования созданного им в 1831 году телеграфного аппарата. Первый соленоид работал по принципу электромагнитной индукции и был некоммутационным устройством.
Первое реле Дж. Генри
Реле, в качестве самостоятельного устройства, впервые упоминается в патенте на телеграф, выданном Самуэлю Морозе.
Первое реле Морзе
Как видим, первой сферой применения этого коммутационного устройства был телеграф и только позднее с развитием техники он стал применяться в электрическом и электронном оборудовании.
ГОСТ 2.768-90 Единая система конструкторской документации (ЕСКД). Обозначения условные графические в схемах. Источники электрохимические, электротермические и тепловые, ГОСТ от 26 октября 1990 года №2.768-90
ГОСТ 2.768-90
Группа Т52
МКС 01.080.40 31.180 ОКСТУ 0002
Дата введения 1992-01-01
1. ВНЕСЕН Государственным комитетом СССР по управлению качеством продукции и стандартам
2. Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 26.10.90 N 2706 стандарт Совета Экономической Взаимопомощи СТ СЭВ 653-89 “Единая система конструкторской документации СЭВ. Обозначения условные графические в электрических схемах. Источники электрохимические, электротермические и тепловые” введен в действие непосредственно в качестве государственного стандарта СССР с 01.01.92
3. СТАНДАРТ СООТВЕТСТВУЕТ стандарту МЭК 617-6-83 в части табл.1, 3, 4, за исключением пп.3-5 табл.1 и п.4 табл.3, и стандарту МЭК 617-8-83 в части табл.2, за исключением п.2 табл.2
4. ПЕРЕИЗДАНИЕ. Ноябрь 2004 г.Настоящий стандарт распространяется на схемы изделий всех отраслей промышленности, выполняемые вручную или автоматизированным способом, и устанавливает условные графические обозначения электрохимических, электротермических и тепловых источников и генераторов мощности.
1. Условные графические обозначения электрохимических источников
1. Условные графические обозначения электрохимических источников должны соответствовать приведенным в табл.1.
Таблица 1
Наименование |
Обозначение |
1. Гальванический элемент (первичный или вторичный) Примечание. Допускается знаки полярности не указывать |
|
2. Батарея, состоящая из гальванических элементов Примечание. Батарею из гальванических элементов допускается обозначать так же, как в п.1. При этом над обозначением проставляют значение напряжения батареи, например напряжение 48 В |
|
3. Батарея с отводами от элементов, например батарея номинального напряжения 12 В, номинальной емкости 84 А·ч с отводами 10 В и 8 В |
|
4. Батарея, состоящая из гальванических элементов с переключаемым отводом |
|
5. Батарея, состоящая из гальванических элементов с двумя переключаемыми отводами, например батарея номинального напряжения 120 В с номинальной емкостью 840 А·ч |
2. Условные графические обозначения электротермических источников
2. Условные графические обозначения электротермических источников должны соответствовать приведенным в табл.2.
Таблица 2
Наименование |
Обозначение |
1. Термоэлемент (термопара) |
|
2. Батарея из термоэлементов, например, с номинальным напряжением 80 В |
|
3. Термоэлектрический преобразователь с контактным нагревом |
|
4. Термоэлектрический преобразователь с бесконтактным нагревом |
Допускается не зачернять или опускать окружности в условных графических обозначениях электротермических источников.
3. Условные графические обозначения источников тепла
3. Условные графические обозначения источников тепла должны соответствовать приведенным в табл.3.
Таблица 3
Наименование |
Обозначение |
1. Источник тепла, основной символ (06-17-01) |
|
2. Радиоизотопный источник тепла (06-17-02) |
|
3. Источник тепла, использующий горение (06-17-03) |
|
4. Источник тепла, использующий неионизирующее излучение |
4. Условные графические обозначения генераторов мощности
4. Условные графические обозначения генераторов мощности должны соответствовать приведенным в табл.4.
Таблица 4
Наименование |
Обозначение |
1. Генератор мощности, основной символ (06-16-01) |
|
2. Термоэлектрический генератор с источником тепла, использующим горение (06-18-01) |
|
3. Термоэлектрический генератор с источником тепла, использующим неионизирующее излучение (06-18-02) |
|
4. Термоэлектрический генератор с радиоизотопным источником тепла (06-18-03) |
|
5. Термоионический полупроводниковый генератор с источником тепла, использующим неионизирующее излучение (06-18-04) |
|
6. Термоионический полупроводниковый генератор с радиоизотопным источником тепла (06-18-05) |
|
7. Генератор с фотоэлектрическим преобразователем (06-18-06) |
Примечания:
1. Числовые обозначения, указанные в скобках после наименования или под условным графическим обозначением, по Международному идентификатору.
2. Соотношения размеров (на модульной сетке) основных условных графических обозначений приведены в приложении.
ПРИЛОЖЕНИЕ (справочное). Соотношение размеров основных условных графических обозначений
ПРИЛОЖЕНИЕ Справочное
Наименование |
Обозначение |
1. Гальванический элемент |
|
2. Термоэлемент (термопара) |
|
3. Бесконтактный нагрев термоэлектрического преобразователя |
|
4. Термоэлектрический генератор с источником тепла, использующим горение |
Электронный текст документаподготовлен АО “Кодекс” и сверен по:официальное издание ЕСКД. Обозначения условные графическиев схемах: Сб. ГОСТов. -М.: ИПК Издательство стандартов, 2005
Стандартные условные графические и буквенные обозначения элементов электрических схем.
С ДРУГОГО САЙТА:
Условные графические обозначения в электрических схемах
ГОСТ 21.614Изображения условные графические электрооборудования и проводок в оригинале
ГОСТ 2.722-68Обозначения условные графические в схемах. Машины электрические
ГОСТ 2.723-68 Обозначения условные графические в схемах. Катушки индуктивности, реакторы, дроссели, трансформаторы, автотрансформаторы и магнитные усилители
ГОСТ 2.729-68 Обозначения условные графические в схемах. Приборы электроизмерительные
ГОСТ 2.755-87 Обозначения условные графические в схемах. Устройства коммутационные и контактные соединения
Скачать книгу.
Обозначения буквенно-цифровые в электрических схемах (ГОСТ 2.710 – 81)
Буквенные коды элементов приведены в таблице. Позиционные обозначения элементам (устройствам) присваивают в пределах изделия. Порядковые номера элементам (устройствам) следует присваивать, начиная с единицы , в пределах группы элементов , имеющих одинаковый буквенный код в соответствии с последовательностью расположения элементов или устройств на схеме сверху вниз в направлении слева направо.
Позиционные обозначения проставляют на схеме рядом с условным графическим обозначением элементов или устройств с правой стороны или над ними. Цифры и буквы, входящие в позиционное обозначение выполняются одного размера.
Однобук- венный код | Группы видов элементов | Примеры видов элементов | Двухбук- венный код |
A | Устройства (общее обозначение) | – | – |
Преобразователи неэлектрических величин в электрические (кроме генераторов и источников питания) или наоборот
Сельсин – приемник
BE
Сельсин – датчик
BC
Тепловой датчик
BK
Фотоэлемент
BL
Датчик давления
BP
Тахогенератор
BR
Датчик скорости
BV
C
Конденсаторы
–
–
Схемы интегральные, микросборки
Схема интегральная,аналоговая
DA
Схема интегральная,цифровая, логический элемент
DD
Устройство задержки
DT
Устройство хранения информации
DS
Нагревательный элемент
EK
Лампа осветительная
EL
Разрядники,предохранители, устройства защитные
Дискретный элемент защиты по току мгновенного действия
FA
Дискретный элемент защиты по току инерционного действия
FP
Дискретный элемент защиты по напряжению
FV
Предохранитель
FU
G
Генераторы, источники питания
Батарея
GB
Элементы индикаторные и сигнальные
Прибор звуковой сигнализации
HA
Индикатор символьный
HG
Прибор световой сигнализации
HL
Реле, контакторы, пускатели
Реле указательное
KH
Реле токовое
KA
Реле электротепловое
KK
Контактор, магнитный пускатель
KM
Реле поляризованное
KP
Реле времени
KT
Реле напряжения
KV
L
Катушки индуктивности,дроссели
Дроссель люминисцентного освещения
LL
M
Двигатели
–
–
Приборы, измерительное оборудование
Амперметр
PA
Счётчик импульсов
PC
Частотометр
PF
Счётчик реактивной энергии
PK
Счётчик активной энергии
PI
Омметр
PR
Регистрирующий прибор
PS
Измеритель времени, часы
PT
Вольтметр
PV
Ваттметр
PW
Выключатели и разъединители в силовых цепях
Выключатель автоматический
QF
Разъединитель
QS
Термистор
RK
Потенциометр
RP
Шунт измерительный
RS
Варистор
RU
Устройства коммутационные в цепях управления, сигнализации и измерительных
Примечание. Обозначение применяют для аппаратов не имеющих контактов силовых цепей
Выключатель или переключатель
SA
Выключатель кнопочный
SB
Выключатель автоматический
SF
Выключатели, срабатывающие от различных воздействий: -от уровня
SL
-от давления
SP
-от положения
SQ
-от частоты вращения
SR
-от температуры
SK
Трансформатор тока
TA
Трансформатор напряжения
TV
Стабилизатор
TS
U
Преобразователи электрических величин в электрические
Преобразователь частоты, инвертор, выпрямитель
UZ
Приборы электровакуумные и полупроводниковые
Диод, стабилитрон
VD
Приборы электровакуумные
VL
Транзистор
VT
Тиристор
VS
Токосъёмник
XA
Штырь
XP
Гнездо
XS
Соединения разборные
XT
Устройства механические с электромагнитным приводом
Электромагнит
YA
Тормоз с электромагнитным приводом
YB
Электромагнитная плита
YH
Дата добавления: 2018-02-15 ; просмотров: 14996 ; ЗАКАЗАТЬ РАБОТУ
{SOURCE}
Основные виды реле и их назначение
Производители настраивают современные коммутационные устройства таким образом, чтобы срабатывание происходило только при определенных условиях, например, при увеличении силы тока, поступающего на входные клеммы КУ. Ниже мы вкратце рассмотрим основные виды соленоидов и их назначение.
Электромагнитные реле
Электромагнитное реле – это электромеханическое коммутационное устройство, принцип действия которого основан на воздействии магнитного поля, созданного током в статичной обмотке, на якорь. Этот вид КУ разделяется собственно на электромагнитные (нейтральные) устройства, которые реагируют лишь на значение тока, подаваемого на обмотку, и поляризованные, работа которых зависит как от токовой величины, так и от полярности.
Принцип работы электромагнитного соленоида
Используемые в промышленном оборудовании электромагнитные реле находятся на промежуточной позиции между сильноточными устройствами (магнитными пускателями, контакторами и т.д.) и слаботочным оборудованием. Наиболее часто данный вид реле применяется в цепях управления.
Реле переменного тока
Срабатывание этого вида реле, как видно из названия, происходит при подаче на обмотку переменного тока определенной частоты. Данное коммутирующее устройство для переменного тока с контролем перехода фазы через ноль или без такового, представляет собой блок из тиристоров, выпрямительных диодов и управляющих схем. Реле переменного тока могут быть выполнены в виде модулей на основе трансформаторной или оптической развязки. Данные КУ применяются в сетях переменного тока с максимальным напряжением 1,6 кВ и средним током нагрузки до 320 A.
Промежуточное реле 220 В
Иногда работа электросети и приборов не возможна без использования промежуточного реле на 220 В. Обычно КУ данного типа применяется, если необходимо разомкнуть или разомкнуть разнонаправленные контакты цепи. К примеру, если используется осветительный прибор с датчиком движения, то один проводник присоединяется к сенсору, а другой подводит электроэнергию к светильнику.
Реле переменного тока широко применяются в промышленном оборудовании и бытовой технике
Работает это таким образом:
- подача тока на первое коммутационное устройство;
- от контактов первого КУ ток поступает на следующее реле, которое имеет более высокие характеристики, чем у предыдущего и способно выдерживать токи с высокими значениями.
С каждым годом реле становятся эффективней и компактней
Функции малогабаритного реле переменного тока с напряжением 220 В весьма разнообразны и широко используются в качестве вспомогательного устройства в самых различных областях. Данный вид КУ применяется в тех случаях, когда основное реле не справляется со своей задачей или же при большом количестве управляемых сетей которые уже не в состоянии обслужить головное устройство.
Промежуточное коммутационное устройство применяется в промышленном и медицинском оборудовании, транспорте, холодильном оборудовании, телевизорах и прочей бытовой технике.
Реле постоянного тока
Реле постоянного тока делятся на нейтральные и поляризованные. Отличие между ними состоит в том, что поляризованные КУ постоянного тока чувствительны к полярности подаваемого напряжения. Якорь коммутационного устройства меняет направление движения в зависимости от полюсов питания. Нейтральные электромагнитные реле постоянного тока не зависят от полярности напряжения.
Электромагнитные КУ постоянного тока в основном используют, когда нет возможности подключения к электрической сети переменного тока.
Четырехконтактное автомобильное реле
К недостаткам соленоидов постоянного тока относят необходимость использования блока питания и более высокую стоимость в сравнении с КУ переменного тока.
Данное видео демонстрирует схему подключения и объясняет принцип работы 4 контактного реле:
Watch this video on YouTube
Электронное реле
Электронное реле управления в схеме прибора
Разобравшись с тем, что такое токовое реле, рассмотрим электронный тип этого устройства. Конструкция и принцип действия электронных реле практически те же, что и в электромеханических КУ. Однако, для выполнения необходимых функций в электронном устройстве используется полупроводниковый диод. В современных транспортных средствах большинство функций реле и переключателей выполняют электронные релейные блоки управления и на данный момент невозможно полностью от них отказаться. Так, например, блок электронных реле позволяет контролировать расход энергии, величину напряжения на клеммах аккумуляторных батарей, управлять системой освещения и т.д.
Монтажные чертежи (схемы) и контакторы
На монтажной рабочей схеме отображаются все типы соединений, подключений и расположение элементов. Она применяется в период непосредственного выполнения электромонтажных работ. Такие схемы относятся к категории рабочих чертежей, используемых во время монтажа и подключения установок и оборудования. По ним же осуществляется сборка некоторых видов электрических конструкций и устройств – щитов, шкафов, пультов управления и др.
Данный тип чертежей включает в себя графику, касающуюся всех кабельно-проводниковых связей между автоматами, пускателями и прочими приборами. Здесь же отображается связь электрических щитов и шкафов с другим электрооборудованием. С целью правильного подключения проводниковых линий, на монтажный план-схему наносятся изображения электрических клеммников, выводов приборов и устройств. Провода и кабели маркируются с указанием сечения, а отдельные линии проводников нумеруются и отмечаются буквенными символами.
Контакторы на монтажных схемах, в зависимости от серии и модели обозначаются как КН, КВ или КМ. Первый символ обозначает серию, а второй и третий – тип контактора – вакуумный и магнитный. На более подробной схеме отображается катушка и ее магнитный сердечник, связующее звено сердечника и силовых контактов. В случае необходимости обозначается корпус прибора в виде контура. При трехфазном подключении устройств общий принцип остается неизменным, за исключением дополнительных силовых контактов.
Иногда контактор и его обозначение на однолинейных схемах, можно нечаянно перепутать с магнитным пускателем. Во избежание подобных ошибок, необходимо учитывать следующие факторы:
- У контакторов обозначение контактов выполняется в форме полукруга или вообще без каких-либо дополнительных графических символов. У магнитных пускателей или расцепителей для обозначения механической связи используется контакт с кубиком, соответствующий рычагу автоматического выключателя.
- Различие в обозначениях корпусов обоих устройств. У контактора корпус наносится пунктиром с обязательным изображением электромагнита и силовых контактов, связанных с ним. У магнитных пускателей в большинстве случаев корпус вообще не отображается.
Выводы и полезное видео по теме
Видео, где рассматривается возможность подключения реле времени. Также этот познавательный фильм рассказывает о том, чем отличается реле времени от таймера и какие функции присущи тем или иным моделям электронных приборов.
Фактически рассматривается возможность использования модульного устройства, где присутствуют два независимых коммутирующих по времени устройства. Схема предусматривает включение двух приборов бытовой техники, настройку их работы во временных интервалах и другие функции.
Конечно же, все существующие модификации реле времени не охватить одним скромным обзором. Для рассмотрения всего ассортимента приборов потребуется написать целую книгу. Собственно, справочники по таймерам разных видов доступны, и при желании отыскать необходимые сведения можно всегда.